计算机科学
推荐系统
算法
情绪分析
分解
质量(理念)
矩阵分解
基础(线性代数)
基质(化学分析)
数据挖掘
人工智能
机器学习
情报检索
数学
生态学
哲学
特征向量
物理
几何学
材料科学
认识论
量子力学
复合材料
生物
作者
Xiangjun Li,Geng Deng,Xiao Zhen Wang,Xiao Liang Wu,Qing Wei Zeng
标识
DOI:10.1016/j.is.2023.102244
摘要
In order to improve recommendation quality of recommendation algorithms, this paper proposes a hybrid recommendation algorithm based on user comments sentiment and matrix decomposition (abbreviate as RACSMD). This algorithm first calculates the sentiment tendency towards the user's comment through the LSTM algorithm, and then integrates the sentiment value of the user's rating to increase the accuracy of the user's actual rating before combining the matrix decomposition recommendation algorithm to improve recommendation quality. This paper theoretically verifies the feasibility of RACSMD through an algorithm example. Moreover, corresponding experimental analysis is conducted on the basis of three data sets of Beeradvocate, Modcloth and Amazon. Experimental results show that the introduction to sentiment tendencies towards user comments can effectively improve recommendation quality of recommendation algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI