Knowledge percolation threshold and optimization strategies of the combinatorial network for complex innovation in the digital economy

渗透(认知心理学) 知识经济 复杂网络 计算机科学 知识管理 背景(考古学) 生产(经济) 领域(数学) 渗流阈值 业务 数学 经济 工程类 微观经济学 地理 电气工程 万维网 生物 考古 神经科学 纯数学 电阻率和电导率
作者
Jianyu Zhao,Lean Yu,Xi Xi,LI Sheng-liang
出处
期刊:Omega [Elsevier BV]
卷期号:120: 102913-102913 被引量:3
标识
DOI:10.1016/j.omega.2023.102913
摘要

Digital economy expands the source of knowledge for innovation and accelerates the flow and combination of knowledge to form novel knowledge combinations, thereby generating the interdisciplinary knowledge production model. In this context, complex innovation which is characterized by the knowledge production consequence based on the combinations of multiple-field knowledge has become the new way for firms to seize new development opportunities and compete in the digital economy. Given that complex innovation emerged from a gradually forming large, multilayered, combinatorial network consists of collaboration networks in various knowledge fields that are initially separated, the challenge of facillatating the emergence of complex innovation is unveiling the minimum proportion of connected paths in the combinatorial network to trigger effective transmission of multi-fields knowledge and offering applicable optimization strategies to optimize that proportion. This study incorporated Ohm's law into the percolation theoretical framework and calculate the knowledge percolation threshold of the combinatorial network and its subnetworks with patent data of Chinese strategic emerging industries. We further examined the optimization results of six strategies in terms of their optimization effects and time costs. Accordingly, we revealed the probability of knowledge percolation occurring in a combinatorial network and its subnetworks, clarified knowledge transmission characteristics according to knowledge-based cluster dynamics, and determined strategies for optimizing the knowledge percolation threshold. This study is not only highly feasible and exercisable for academics to conduct future studies, but it also has vital implications for the practitioners to utilize and control the knowledge transmission of the combinatorial network to realize the complex innovation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纯情的天奇完成签到 ,获得积分10
1秒前
顺利一德发布了新的文献求助10
2秒前
潇湘雪月发布了新的文献求助10
2秒前
2秒前
胡萝卜发布了新的文献求助10
3秒前
哈哈哈发布了新的文献求助10
4秒前
4秒前
汉堡包应助果粒多采纳,获得10
5秒前
9秒前
华仔发布了新的文献求助20
9秒前
9秒前
科研通AI2S应助杜杜采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
JK发布了新的文献求助10
12秒前
打打应助顺利一德采纳,获得10
13秒前
法外狂徒完成签到,获得积分10
14秒前
Orange应助十九岁的时差采纳,获得10
14秒前
科研通AI2S应助steam采纳,获得10
16秒前
潇湘雪月发布了新的文献求助10
16秒前
17秒前
青青子衿完成签到,获得积分10
17秒前
17秒前
17秒前
19秒前
crazy发布了新的文献求助10
22秒前
杜杜发布了新的文献求助10
23秒前
嗯嗯发布了新的文献求助10
24秒前
老大蒂亚戈完成签到,获得积分10
26秒前
宝安完成签到,获得积分10
30秒前
JamesPei应助动听的老鼠采纳,获得10
30秒前
30秒前
杨可言完成签到,获得积分10
30秒前
31秒前
31秒前
32秒前
Hello应助子非鱼采纳,获得10
33秒前
34秒前
36秒前
mzhmhy发布了新的文献求助10
38秒前
李健的粉丝团团长应助ASA采纳,获得30
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136