亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning modeling and prognostic value analysis of invasion-related genes in cutaneous melanoma

弗雷明翰风险评分 基因签名 转录组 比例危险模型 肿瘤科 计算生物学 医学 基因 生物 生物信息学 机器学习 疾病 内科学 基因表达 计算机科学 遗传学
作者
Enyu Yang,Qianyun Ding,Xiaowei Fan,Haihan Ye,Cheng Xuan,Shuo Zhao,Qing Ji,Weihua Yu,Yongfu Liu,Jun Cao,Meiyu Fang,Xianfeng Ding
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:162: 107089-107089 被引量:11
标识
DOI:10.1016/j.compbiomed.2023.107089
摘要

In this study, we aimed to develop an invasion-related risk signature and prognostic model for personalized treatment and prognosis prediction in skin cutaneous melanoma (SKCM), as invasion plays a crucial role in this disease. We identified 124 differentially expressed invasion-associated genes (DE-IAGs) and selected 20 prognostic genes (TTYH3, NME1, ORC1, PLK1, MYO10, SPINT1, NUPR1, SERPINE2, HLA-DQB2, METTL7B, TIMP1, NOX4, DBI, ARL15, APOBEC3G, ARRB2, DRAM1, RNF213, C14orf28, and CPEB3) using Cox and LASSO regression to establish a risk score. Gene expression was validated through single-cell sequencing, protein expression, and transcriptome analysis. Negative correlations were discovered between risk score, immune score, and stromal score using ESTIMATE and CIBERSORT algorithms. High- and low-risk groups exhibited significant differences in immune cell infiltration and checkpoint molecule expression. The 20 prognostic genes effectively differentiated between SKCM and normal samples (AUCs >0.7). We identified 234 drugs targeting 6 genes from the DGIdb database. Our study provides potential biomarkers and a risk signature for personalized treatment and prognosis prediction in SKCM patients. We developed a nomogram and machine-learning prognostic model to predict 1-, 3-, and 5-year overall survival (OS) using risk signature and clinical factors. The best model, Extra Trees Classifier (AUC = 0.88), was derived from pycaret's comparison of 15 classifiers. The pipeline and app are accessible at https://github.com/EnyuY/IAGs-in-SKCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
难过忆山发布了新的文献求助10
17秒前
22秒前
sssss发布了新的文献求助40
26秒前
sssss完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
天天快乐应助科研通管家采纳,获得10
2分钟前
汉堡包应助桃子e采纳,获得10
2分钟前
2分钟前
桃子e发布了新的文献求助10
2分钟前
伊伊伊伊一一一完成签到,获得积分10
2分钟前
ding应助scn666采纳,获得10
3分钟前
思源应助桃子e采纳,获得10
3分钟前
欣喜的香菱完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
桃子e发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
4分钟前
难过忆山发布了新的文献求助10
4分钟前
英姑应助Zz采纳,获得10
4分钟前
所所应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
hq完成签到 ,获得积分10
4分钟前
5分钟前
poki完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
充电宝应助科研通管家采纳,获得10
6分钟前
6分钟前
天天快乐应助Fluoxtine采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788708
求助须知:如何正确求助?哪些是违规求助? 5710788
关于积分的说明 15473823
捐赠科研通 4916686
什么是DOI,文献DOI怎么找? 2646520
邀请新用户注册赠送积分活动 1594203
关于科研通互助平台的介绍 1548617