已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

POS0529 USING SOCIAL MEDIA CONVERSATIONS TO UNDERSTAND PATIENT CARE: FACTORS DRIVING PROACTIVE VS REACTIVE MANAGEMENT OF GOUT

痛风 医学 社会化媒体 子专业 疾病管理 物理疗法 家庭医学 疾病 内科学 计算机科学 万维网 帕金森病
作者
M. Flurie,M. Converse,Karina W. Davidson,Daniel Hernandez,H. Hernandez,G. C. Ho,B. Lamoreaux,Christine Parker,C. DeFelice,Maurice Flurie,E. Robert Wassman
标识
DOI:10.1136/annrheumdis-2023-eular.1625
摘要

Background

To understand the needs of a particular community, it is imperative to actively listen to and interpret the patient experience. We used a proprietary artificial intelligence (AI) analytics engine that uses natural language processing to evaluate social media conversations in online gout communities. Gout is a chronic disease defined by uric acid crystal deposits which induce painful arthritis flares/flare-ups [1]. Managing gout can be characterized by two approaches: proactive and reactive management. Proactive management refers to scheduled, prophylactic care (e.g., regular doctor visits, treating underlying illness), whereas reactive management is spontaneous care driven by symptom onset (e.g., urgent care/walk-in clinic visits). The ideal management strategy is debated. Subspecialty groups recommend a proactive “treat-to-target” strategy focused on uric acid. The American College of Physicians recommends “treat-to-symptom control” without a “treat-to-uric acid-target” strategy. We assessed patient views on each to improve our understanding of these management methods.

Objectives

The current study aimed to identify gout symptoms associated with reactive management. We also wanted to contrast the sentiment of online gout community conversations when describing proactive vs reactive therapeutic experiences.

Methods

We evaluated 2 social media sources: a private Facebook group, The Gout Support Group of America (1000+ members, 99 countries), which had 50,000 posts/comments gathered in 2021-2022; and a public subreddit (r/gout) (9000+ members) with 125,000 posts/comments from 2011-2022. Our AI engine first tagged all posts/comments discussing proactive or reactive care experiences. Entity recognition was then used to identify the most frequently mentioned clinical findings in conversations by care type. We then fit a logistic regression model in which clinical finding mentions predicted care type. To characterize the general sentiment of conversations, the engine scored all posts/comments from −1 (most negative) to 1 (most positive) using a pretrained sentiment tagger.

Results

Flares, pain, uric acid, and swelling were the most frequently mentioned in both proactive and reactive conversations. Reactive care gout conversations (n = 1253 posts/comments from 624 users) were associated with a significantly higher probability of mentioning ‘pain’ and ‘swelling’ and a significantly lower probability of mentioning ‘uric acid’ than were proactive care conversations (n = 1205 posts/comments, 521 users). Mentioning ‘flares’ did not significantly impact the probability of mentioning either care type. Sentiment analysis showed that reactive care statements had a significantly lower mean sentiment score; indicating discussions about reactive care experiences tended to be more negative than those about proactive care.

Conclusion

In analyzing gout social media posts, we found that flares, pain, swelling, and concerns related to uric acid were primary motivators for individuals seeking gout care. Conversations mentioning ‘pain’ were twice as likely to mention reactive care compared to proactive gout conversations. Analysis also showed that reactive care gout conversations tended to be more negative, supporting the position that proactive management may be more beneficial for individuals with gout overall. This type of information can be used to identify and address patients’ areas of concern or dissatisfaction. Future work should continue exploring these patient-reported perspectives and experiences so clinicians, caregivers, and patients can better understand and guide care-based management decisions.

References

[1]Mikuls TR. Gout. N Engl J Med. 2022;387(20):1877-1887. doi:10.1056/NEJMcp2203385

Acknowledgements

The authors would like to thank our TREND Community managers Matthew Horsnell and Rachelle Cook for their contribution in providing advocacy and support for the gout community; and the private Facebook group, Gout Support Group of America, for providing access to data during the preparation of this abstract. Funding for this work was provided by Horizon Therapeutics.

Disclosure of Interests

Maurice Flurie Grant/research support from: Our clients are pharmaceutical and biotechnology companies including, but not limited to Horizon Therapeutics, Chiesi Global Rare Disease, Novartis, Harmony Biosciences, and Avadel. TREND Community: employee, Monica Converse Grant/research support from: Our clients are pharmaceutical and biotechnology companies including, but not limited to Horizon Therapeutics, Chiesi Global Rare Disease, Novartis, Harmony Biosciences, and Avadel. TREND Community: employee, Kristina Davidson Shareholder of: Horizon Therapeutics, Employee of: Horizon Therapeutics, Daniel Hernandez: None declared, Helen Hernandez: None declared, Gary Ho Grant/research support from: Horizon Therapeutics, Brian LaMoreaux Shareholder of: Horizon Therapeutics, Employee of: Horizon Therapeutics, Christopher Parker Speakers bureau: Horizon Therapeutics, Christopher DeFelice Grant/research support from: Our clients are pharmaceutical and biotechnology companies including, but not limited to Horizon Therapeutics, Chiesi Global Rare Disease, Novartis, Harmony Biosciences, and Avadel. TREND Community: owner, Maria Picone Grant/research support from: Our clients are pharmaceutical and biotechnology companies including, but not limited to Horizon Therapeutics, Chiesi Global Rare Disease, Novartis, Harmony Biosciences, and Avadel. TREND Community: owner, E. Robert Wassman Grant/research support from: Our clients are pharmaceutical and biotechnology companies including, but not limited to Horizon Therapeutics, Chiesi Global Rare Disease, Novartis, Harmony Biosciences, and Avadel. TREND Community: employee.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
宗铁强完成签到,获得积分20
2秒前
3秒前
Lucas应助简单雨柏采纳,获得10
6秒前
7秒前
8秒前
8秒前
10秒前
Nian发布了新的文献求助10
11秒前
YY发布了新的文献求助10
12秒前
13秒前
王磊完成签到 ,获得积分10
16秒前
16秒前
yi只熊完成签到,获得积分20
17秒前
简单雨柏完成签到,获得积分10
18秒前
yi只熊发布了新的文献求助20
21秒前
Kylin完成签到,获得积分10
23秒前
25秒前
26秒前
26秒前
赘婿应助yi只熊采纳,获得20
29秒前
Alex应助科研通管家采纳,获得20
30秒前
gkads应助科研通管家采纳,获得10
30秒前
浮游应助科研通管家采纳,获得10
30秒前
大模型应助科研通管家采纳,获得10
30秒前
火火发布了新的文献求助10
30秒前
Trinka完成签到,获得积分10
32秒前
JamesPei应助zhuxiaoyue采纳,获得10
33秒前
顺心的笑珊完成签到,获得积分10
36秒前
羞涩的傲菡完成签到,获得积分10
40秒前
42秒前
脑洞疼应助顺心的笑珊采纳,获得10
43秒前
47秒前
冷艳的语雪完成签到 ,获得积分10
48秒前
Amelie完成签到 ,获得积分10
49秒前
songshuyu完成签到,获得积分10
51秒前
沧海静音发布了新的文献求助10
51秒前
52秒前
浮游应助Hector采纳,获得10
56秒前
ZB完成签到,获得积分10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525110
关于积分的说明 14101161
捐赠科研通 4438888
什么是DOI,文献DOI怎么找? 2436526
邀请新用户注册赠送积分活动 1428500
关于科研通互助平台的介绍 1406528