EMO-MVS: Error-Aware Multi-Scale Iterative Variable Optimizer for Efficient Multi-View Stereo

计算机科学 人工智能 水准点(测量) 投影(关系代数) 计算机视觉 变量(数学) 一般化 集合(抽象数据类型) 算法 数学 数学分析 大地测量学 程序设计语言 地理
作者
Huizhou Zhou,Haoliang Zhao,Qi Wang,Liang Lei,Ge‐Fei Hao,Yusheng Xu,Zhen Ye
出处
期刊:Remote Sensing [MDPI AG]
卷期号:14 (23): 6085-6085 被引量:11
标识
DOI:10.3390/rs14236085
摘要

Efficient dense reconstruction of objects or scenes has substantial practical implications, which can be applied to different 3D tasks (for example, robotics and autonomous driving). However, because of the expensive hardware required and the overall complexity of the all-around scenarios, efficient dense reconstruction using lightweight multi-view stereo methods has received much attention from researchers. The technological challenge of efficient dense reconstruction is maintaining low memory usage while rapidly and reliably acquiring depth maps. Most of the current efficient multi-view stereo (MVS) methods perform poorly in efficient dense reconstruction, this poor performance is mainly due to weak generalization performance and unrefined object edges in the depth maps. To this end, we propose EMO-MVS, which aims to accomplish multi-view stereo tasks with high efficiency, which means low-memory consumption, high accuracy, and excellent generalization performance. In detail, we first propose an iterative variable optimizer to accurately estimate depth changes. Then, we design a multi-level absorption unit that expands the receptive field, which efficiently generates an initial depth map. In addition, we propose an error-aware enhancement module, enhancing the initial depth map by optimizing the projection error between multiple views. We have conducted extensive experiments on challenging datasets Tanks and Temples and DTU, and also performed a complete visualization comparison on the BlenedMVS validation set (which contains many aerial scene images), achieving promising performance on all datasets. Among the lightweight MVS methods with low-memory consumption and fast inference speed, our F-score on the online Tanks and Temples intermediate benchmark is the highest, which shows that we have the best competitiveness in terms of balancing the performance and computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
FFFFFF完成签到,获得积分10
刚刚
Jane完成签到,获得积分10
2秒前
晨晨完成签到 ,获得积分10
2秒前
bioinforiver发布了新的文献求助10
3秒前
陈转霞发布了新的文献求助10
4秒前
郁浅应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
Momomo应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
一一应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得30
5秒前
浮游应助科研通管家采纳,获得10
5秒前
Momomo应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
冷傲迎梦发布了新的文献求助10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
华仔应助羊羊羊采纳,获得30
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
麻雀发布了新的文献求助10
6秒前
郁浅应助科研通管家采纳,获得10
6秒前
6秒前
Orange应助科研通管家采纳,获得30
6秒前
浮游应助科研通管家采纳,获得10
6秒前
8秒前
识时务这也完成签到,获得积分10
8秒前
9秒前
要减肥的冥完成签到,获得积分10
10秒前
youy完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495259
求助须知:如何正确求助?哪些是违规求助? 4592967
关于积分的说明 14439338
捐赠科研通 4525803
什么是DOI,文献DOI怎么找? 2479715
邀请新用户注册赠送积分活动 1464544
关于科研通互助平台的介绍 1437385