EMO-MVS: Error-Aware Multi-Scale Iterative Variable Optimizer for Efficient Multi-View Stereo

计算机科学 人工智能 水准点(测量) 投影(关系代数) 计算机视觉 变量(数学) 一般化 集合(抽象数据类型) 算法 数学 大地测量学 数学分析 程序设计语言 地理
作者
Huizhou Zhou,Haoliang Zhao,Qi Wang,Liang Lei,Ge‐Fei Hao,Yusheng Xu,Zhen Ye
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (23): 6085-6085 被引量:11
标识
DOI:10.3390/rs14236085
摘要

Efficient dense reconstruction of objects or scenes has substantial practical implications, which can be applied to different 3D tasks (for example, robotics and autonomous driving). However, because of the expensive hardware required and the overall complexity of the all-around scenarios, efficient dense reconstruction using lightweight multi-view stereo methods has received much attention from researchers. The technological challenge of efficient dense reconstruction is maintaining low memory usage while rapidly and reliably acquiring depth maps. Most of the current efficient multi-view stereo (MVS) methods perform poorly in efficient dense reconstruction, this poor performance is mainly due to weak generalization performance and unrefined object edges in the depth maps. To this end, we propose EMO-MVS, which aims to accomplish multi-view stereo tasks with high efficiency, which means low-memory consumption, high accuracy, and excellent generalization performance. In detail, we first propose an iterative variable optimizer to accurately estimate depth changes. Then, we design a multi-level absorption unit that expands the receptive field, which efficiently generates an initial depth map. In addition, we propose an error-aware enhancement module, enhancing the initial depth map by optimizing the projection error between multiple views. We have conducted extensive experiments on challenging datasets Tanks and Temples and DTU, and also performed a complete visualization comparison on the BlenedMVS validation set (which contains many aerial scene images), achieving promising performance on all datasets. Among the lightweight MVS methods with low-memory consumption and fast inference speed, our F-score on the online Tanks and Temples intermediate benchmark is the highest, which shows that we have the best competitiveness in terms of balancing the performance and computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
烩面大师发布了新的文献求助10
刚刚
犹豫野狼完成签到 ,获得积分10
刚刚
黄小翰发布了新的文献求助50
1秒前
fengyi2999发布了新的文献求助10
1秒前
俊秀的芫发布了新的文献求助10
1秒前
我是老大应助哈哈哈哈哈采纳,获得10
1秒前
1秒前
萤火发布了新的文献求助10
1秒前
肖肖发布了新的文献求助10
2秒前
阳光土豆发布了新的文献求助10
2秒前
三岁发布了新的文献求助10
2秒前
兴奋千兰完成签到,获得积分10
4秒前
Aspirin发布了新的文献求助10
4秒前
Angelie完成签到 ,获得积分10
5秒前
千里独行侠完成签到,获得积分10
6秒前
Happyness应助我还能学采纳,获得30
7秒前
科研潜水完成签到 ,获得积分10
7秒前
汉堡包应助Aspirin采纳,获得10
9秒前
9秒前
霜霜发布了新的文献求助10
9秒前
10秒前
10秒前
Owen应助知性的友易采纳,获得10
10秒前
11秒前
12秒前
小景007完成签到,获得积分10
12秒前
yipyip发布了新的文献求助10
12秒前
12秒前
12秒前
张雯思完成签到,获得积分10
13秒前
Ava应助DDY采纳,获得10
13秒前
13秒前
orixero应助肖肖采纳,获得10
13秒前
dani_tian完成签到,获得积分10
13秒前
14秒前
哈哈哈哈哈完成签到,获得积分10
14秒前
Liooo发布了新的文献求助10
14秒前
思源应助风清扬采纳,获得100
14秒前
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978596
求助须知:如何正确求助?哪些是违规求助? 3522689
关于积分的说明 11214402
捐赠科研通 3260158
什么是DOI,文献DOI怎么找? 1799770
邀请新用户注册赠送积分活动 878659
科研通“疑难数据库(出版商)”最低求助积分说明 807033