EMO-MVS: Error-Aware Multi-Scale Iterative Variable Optimizer for Efficient Multi-View Stereo

计算机科学 人工智能 水准点(测量) 投影(关系代数) 计算机视觉 变量(数学) 一般化 集合(抽象数据类型) 算法 数学 大地测量学 数学分析 程序设计语言 地理
作者
Huizhou Zhou,Haoliang Zhao,Qi Wang,Liang Lei,Ge‐Fei Hao,Yusheng Xu,Zhen Ye
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (23): 6085-6085 被引量:11
标识
DOI:10.3390/rs14236085
摘要

Efficient dense reconstruction of objects or scenes has substantial practical implications, which can be applied to different 3D tasks (for example, robotics and autonomous driving). However, because of the expensive hardware required and the overall complexity of the all-around scenarios, efficient dense reconstruction using lightweight multi-view stereo methods has received much attention from researchers. The technological challenge of efficient dense reconstruction is maintaining low memory usage while rapidly and reliably acquiring depth maps. Most of the current efficient multi-view stereo (MVS) methods perform poorly in efficient dense reconstruction, this poor performance is mainly due to weak generalization performance and unrefined object edges in the depth maps. To this end, we propose EMO-MVS, which aims to accomplish multi-view stereo tasks with high efficiency, which means low-memory consumption, high accuracy, and excellent generalization performance. In detail, we first propose an iterative variable optimizer to accurately estimate depth changes. Then, we design a multi-level absorption unit that expands the receptive field, which efficiently generates an initial depth map. In addition, we propose an error-aware enhancement module, enhancing the initial depth map by optimizing the projection error between multiple views. We have conducted extensive experiments on challenging datasets Tanks and Temples and DTU, and also performed a complete visualization comparison on the BlenedMVS validation set (which contains many aerial scene images), achieving promising performance on all datasets. Among the lightweight MVS methods with low-memory consumption and fast inference speed, our F-score on the online Tanks and Temples intermediate benchmark is the highest, which shows that we have the best competitiveness in terms of balancing the performance and computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助Aohang采纳,获得10
刚刚
ccm发布了新的文献求助10
2秒前
Jackylee应助软软橙采纳,获得20
3秒前
笑点低的泥猴桃完成签到,获得积分10
3秒前
垃圾完成签到,获得积分20
3秒前
思源应助Jason采纳,获得10
4秒前
5秒前
5秒前
5秒前
6秒前
淡然丹秋发布了新的文献求助10
6秒前
7秒前
玖川发布了新的文献求助10
7秒前
8秒前
8秒前
打打应助sy2001采纳,获得10
9秒前
9秒前
10秒前
mjf111完成签到,获得积分10
10秒前
xzh发布了新的文献求助10
10秒前
Joker完成签到,获得积分10
10秒前
ccm发布了新的文献求助10
11秒前
小鲨鱼发布了新的文献求助10
12秒前
12秒前
Mr_Hao发布了新的文献求助10
14秒前
14秒前
14秒前
小蘑菇应助YC采纳,获得10
14秒前
尊敬的怀绿完成签到,获得积分10
16秒前
四月一日发布了新的文献求助10
16秒前
鸠摩智完成签到,获得积分10
17秒前
郁启蒙完成签到 ,获得积分10
17秒前
18秒前
雪白阑悦发布了新的文献求助30
18秒前
无心的砖家完成签到,获得积分20
19秒前
今后应助科研通管家采纳,获得10
19秒前
天天快乐应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259760
求助须知:如何正确求助?哪些是违规求助? 4421264
关于积分的说明 13762582
捐赠科研通 4295161
什么是DOI,文献DOI怎么找? 2356757
邀请新用户注册赠送积分活动 1353139
关于科研通互助平台的介绍 1314315