EMO-MVS: Error-Aware Multi-Scale Iterative Variable Optimizer for Efficient Multi-View Stereo

计算机科学 人工智能 水准点(测量) 投影(关系代数) 计算机视觉 变量(数学) 一般化 集合(抽象数据类型) 算法 数学 大地测量学 数学分析 程序设计语言 地理
作者
Huizhou Zhou,Haoliang Zhao,Qi Wang,Liang Lei,Ge‐Fei Hao,Yusheng Xu,Zhen Ye
出处
期刊:Remote Sensing [MDPI AG]
卷期号:14 (23): 6085-6085 被引量:11
标识
DOI:10.3390/rs14236085
摘要

Efficient dense reconstruction of objects or scenes has substantial practical implications, which can be applied to different 3D tasks (for example, robotics and autonomous driving). However, because of the expensive hardware required and the overall complexity of the all-around scenarios, efficient dense reconstruction using lightweight multi-view stereo methods has received much attention from researchers. The technological challenge of efficient dense reconstruction is maintaining low memory usage while rapidly and reliably acquiring depth maps. Most of the current efficient multi-view stereo (MVS) methods perform poorly in efficient dense reconstruction, this poor performance is mainly due to weak generalization performance and unrefined object edges in the depth maps. To this end, we propose EMO-MVS, which aims to accomplish multi-view stereo tasks with high efficiency, which means low-memory consumption, high accuracy, and excellent generalization performance. In detail, we first propose an iterative variable optimizer to accurately estimate depth changes. Then, we design a multi-level absorption unit that expands the receptive field, which efficiently generates an initial depth map. In addition, we propose an error-aware enhancement module, enhancing the initial depth map by optimizing the projection error between multiple views. We have conducted extensive experiments on challenging datasets Tanks and Temples and DTU, and also performed a complete visualization comparison on the BlenedMVS validation set (which contains many aerial scene images), achieving promising performance on all datasets. Among the lightweight MVS methods with low-memory consumption and fast inference speed, our F-score on the online Tanks and Temples intermediate benchmark is the highest, which shows that we have the best competitiveness in terms of balancing the performance and computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
2秒前
2秒前
3秒前
4秒前
4秒前
万能图书馆应助焰色天雷采纳,获得10
4秒前
Qiang发布了新的文献求助10
4秒前
lllllq发布了新的文献求助10
5秒前
De_Frank123发布了新的文献求助10
5秒前
zzz完成签到,获得积分10
6秒前
cccs发布了新的文献求助10
7秒前
小可爱发布了新的文献求助30
7秒前
苹果妙之发布了新的文献求助10
7秒前
8秒前
8秒前
marshyyy应助LYH采纳,获得10
8秒前
博弈春秋发布了新的文献求助10
9秒前
9秒前
方方方2015完成签到,获得积分10
9秒前
9秒前
10秒前
Eternal发布了新的文献求助10
11秒前
11秒前
整齐的初阳完成签到,获得积分10
11秒前
可爱的函函应助liu采纳,获得10
12秒前
12秒前
温水煮青蛙完成签到 ,获得积分10
12秒前
vv123456ha发布了新的文献求助10
14秒前
Freya发布了新的文献求助50
14秒前
丰富的大地完成签到,获得积分10
15秒前
王写写发布了新的文献求助10
15秒前
15秒前
一只小猪包完成签到,获得积分10
16秒前
ZXW完成签到,获得积分10
16秒前
MOON完成签到,获得积分10
17秒前
鞋子发布了新的文献求助10
18秒前
sada完成签到,获得积分20
19秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124422
求助须知:如何正确求助?哪些是违规求助? 2774782
关于积分的说明 7723789
捐赠科研通 2430217
什么是DOI,文献DOI怎么找? 1290974
科研通“疑难数据库(出版商)”最低求助积分说明 622023
版权声明 600297