已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EMO-MVS: Error-Aware Multi-Scale Iterative Variable Optimizer for Efficient Multi-View Stereo

计算机科学 人工智能 水准点(测量) 投影(关系代数) 计算机视觉 变量(数学) 一般化 集合(抽象数据类型) 算法 数学 大地测量学 数学分析 程序设计语言 地理
作者
Huizhou Zhou,Haoliang Zhao,Qi Wang,Liang Lei,Ge‐Fei Hao,Yusheng Xu,Zhen Ye
出处
期刊:Remote Sensing [MDPI AG]
卷期号:14 (23): 6085-6085 被引量:11
标识
DOI:10.3390/rs14236085
摘要

Efficient dense reconstruction of objects or scenes has substantial practical implications, which can be applied to different 3D tasks (for example, robotics and autonomous driving). However, because of the expensive hardware required and the overall complexity of the all-around scenarios, efficient dense reconstruction using lightweight multi-view stereo methods has received much attention from researchers. The technological challenge of efficient dense reconstruction is maintaining low memory usage while rapidly and reliably acquiring depth maps. Most of the current efficient multi-view stereo (MVS) methods perform poorly in efficient dense reconstruction, this poor performance is mainly due to weak generalization performance and unrefined object edges in the depth maps. To this end, we propose EMO-MVS, which aims to accomplish multi-view stereo tasks with high efficiency, which means low-memory consumption, high accuracy, and excellent generalization performance. In detail, we first propose an iterative variable optimizer to accurately estimate depth changes. Then, we design a multi-level absorption unit that expands the receptive field, which efficiently generates an initial depth map. In addition, we propose an error-aware enhancement module, enhancing the initial depth map by optimizing the projection error between multiple views. We have conducted extensive experiments on challenging datasets Tanks and Temples and DTU, and also performed a complete visualization comparison on the BlenedMVS validation set (which contains many aerial scene images), achieving promising performance on all datasets. Among the lightweight MVS methods with low-memory consumption and fast inference speed, our F-score on the online Tanks and Temples intermediate benchmark is the highest, which shows that we have the best competitiveness in terms of balancing the performance and computational cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科目三应助范范采纳,获得10
1秒前
霜序发布了新的文献求助20
2秒前
myself0011发布了新的文献求助10
4秒前
尔玉完成签到 ,获得积分10
11秒前
13秒前
15秒前
Owen应助蓝色牛马采纳,获得10
16秒前
echo发布了新的文献求助10
16秒前
21秒前
CodeCraft应助哈比人linling采纳,获得10
24秒前
JamesPei应助在南方看北方采纳,获得10
24秒前
25秒前
wwl01034完成签到 ,获得积分10
27秒前
kenti2023完成签到 ,获得积分10
27秒前
28秒前
突突突完成签到 ,获得积分10
28秒前
jinyu完成签到 ,获得积分10
29秒前
蔡文姬发布了新的文献求助10
29秒前
31秒前
霜序完成签到,获得积分10
33秒前
徐甜完成签到 ,获得积分10
35秒前
35秒前
35秒前
一夜轻舟完成签到,获得积分10
36秒前
蓝色牛马发布了新的文献求助10
40秒前
小二郎应助和谐冷之采纳,获得10
47秒前
小冯完成签到 ,获得积分10
47秒前
夏夜完成签到 ,获得积分10
50秒前
英姑应助舒适行云采纳,获得10
51秒前
事事包子完成签到 ,获得积分10
52秒前
WILD完成签到,获得积分10
54秒前
小闫同学完成签到 ,获得积分10
55秒前
Samathy完成签到,获得积分10
55秒前
57秒前
StoneT完成签到,获得积分20
58秒前
雾色笼晓树苍完成签到 ,获得积分10
58秒前
张向向发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713994
求助须知:如何正确求助?哪些是违规求助? 5219700
关于积分的说明 15272439
捐赠科研通 4865609
什么是DOI,文献DOI怎么找? 2612227
邀请新用户注册赠送积分活动 1562402
关于科研通互助平台的介绍 1519591