Detection of Apple Plant Diseases Using Leaf Images Through Convolutional Neural Network

计算机科学 卷积神经网络 过度拟合 人工智能 深度学习 机器学习 植物病害 上下文图像分类 集合(抽象数据类型) 人工神经网络 模式识别(心理学) 图像(数学) 生物技术 生物 程序设计语言
作者
Vibhor Kumar Vishnoi,Krishan Kumar,B. V. Rathish Kumar,Shashank Mohan,Arfat Ahmad Khan
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 6594-6609 被引量:7
标识
DOI:10.1109/access.2022.3232917
摘要

Plant diseases are a severe cause of crop losses in the agriculture globally. Detection of diseases in plants is difficult and challenging due to the lack of expert knowledge. Deep learning-based models provide promising ways to identify plant diseases using leaf images. However, need of larger training sets, computational complexity, and overfitting, etc. are the major issues with these techniques that still need to be addressed. In this work, a convolutional neural network (CNN) is developed that consists of smaller number of layers leading to lower computational burden. Some augmentation techniques such as shift, shear, scaling, zoom, and flipping are applied to generate additional samples increasing the training set without actually capturing more images. The CNN model is trained for apple crop using a publicly available dataset PlantVillage to identify Scab, Black rot, and Cedar rust diseases in apple leaves. The rigorous experimental results revealed that the proposed model is well fit to identify apple leaf diseases and achieves 98% classification accuracy. It is also evident from the results that it needs lesser amount of storage and takes smaller execution time than several existing deep CNN models. Although, there exist several CNN models for crop disease detection with comparable accuracy, but the proposed model needs lower storage and computational resources. Therefore, it is highly suitable for deploying in handheld devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘金金完成签到,获得积分10
刚刚
刚刚
命运的X号发布了新的文献求助10
刚刚
1秒前
HJJHJH发布了新的文献求助10
1秒前
1秒前
爱听歌的电源完成签到,获得积分10
1秒前
善学以致用应助新的心跳采纳,获得10
1秒前
2秒前
陈梦雨发布了新的文献求助10
3秒前
复杂瑛完成签到,获得积分10
3秒前
3秒前
4秒前
眼睛大世开完成签到 ,获得积分10
4秒前
赤邪发布了新的文献求助10
5秒前
安凉完成签到,获得积分10
5秒前
yangyong完成签到,获得积分10
5秒前
zkkz完成签到,获得积分10
5秒前
打打应助橘子采纳,获得40
5秒前
Jasper应助云澈采纳,获得10
5秒前
隐形曼青应助7777777采纳,获得10
5秒前
科研通AI5应助SCI采纳,获得10
6秒前
芋头不秃头完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
kushdw完成签到,获得积分10
8秒前
傲娇小废柴完成签到,获得积分20
9秒前
TranYan发布了新的文献求助10
9秒前
Sally发布了新的文献求助10
9秒前
sun应助怡然的飞珍采纳,获得20
10秒前
10秒前
11秒前
11秒前
孔雨珍完成签到,获得积分10
12秒前
娇气的春天完成签到 ,获得积分10
12秒前
13秒前
13秒前
13秒前
大模型应助奔奔采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794