Detection of Apple Plant Diseases Using Leaf Images Through Convolutional Neural Network

计算机科学 卷积神经网络 过度拟合 人工智能 深度学习 机器学习 植物病害 上下文图像分类 集合(抽象数据类型) 人工神经网络 模式识别(心理学) 图像(数学) 生物技术 生物 程序设计语言
作者
Vibhor Kumar Vishnoi,Krishan Kumar,B. V. Rathish Kumar,Shashank Mohan,Arfat Ahmad Khan
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 6594-6609 被引量:7
标识
DOI:10.1109/access.2022.3232917
摘要

Plant diseases are a severe cause of crop losses in the agriculture globally. Detection of diseases in plants is difficult and challenging due to the lack of expert knowledge. Deep learning-based models provide promising ways to identify plant diseases using leaf images. However, need of larger training sets, computational complexity, and overfitting, etc. are the major issues with these techniques that still need to be addressed. In this work, a convolutional neural network (CNN) is developed that consists of smaller number of layers leading to lower computational burden. Some augmentation techniques such as shift, shear, scaling, zoom, and flipping are applied to generate additional samples increasing the training set without actually capturing more images. The CNN model is trained for apple crop using a publicly available dataset PlantVillage to identify Scab, Black rot, and Cedar rust diseases in apple leaves. The rigorous experimental results revealed that the proposed model is well fit to identify apple leaf diseases and achieves 98% classification accuracy. It is also evident from the results that it needs lesser amount of storage and takes smaller execution time than several existing deep CNN models. Although, there exist several CNN models for crop disease detection with comparable accuracy, but the proposed model needs lower storage and computational resources. Therefore, it is highly suitable for deploying in handheld devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
共享精神应助kiki采纳,获得10
3秒前
5秒前
明理向真完成签到,获得积分10
6秒前
Owen应助hjl90527采纳,获得10
7秒前
manggggo完成签到,获得积分10
9秒前
传奇3应助荔刻UTD采纳,获得10
10秒前
aaiirrii发布了新的文献求助10
10秒前
qhk完成签到,获得积分10
13秒前
陌疑应助Steven采纳,获得10
14秒前
战晓完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
余航发布了新的文献求助10
16秒前
17秒前
任性吐司完成签到 ,获得积分10
17秒前
淼鑫发布了新的文献求助10
18秒前
博修发布了新的文献求助10
19秒前
文文完成签到,获得积分10
20秒前
kiki发布了新的文献求助10
21秒前
viper3完成签到,获得积分10
21秒前
欣欣欣发布了新的文献求助30
21秒前
梧桐发布了新的文献求助10
22秒前
hjl90527发布了新的文献求助10
22秒前
太吾墨完成签到,获得积分10
23秒前
bkagyin应助淼鑫采纳,获得10
23秒前
顾矜应助HM采纳,获得10
24秒前
25秒前
量子星尘发布了新的文献求助10
26秒前
完美世界应助科研張采纳,获得10
27秒前
邢冥幽完成签到,获得积分10
28秒前
无情曼易发布了新的文献求助10
30秒前
31秒前
充电宝应助东京芝士123采纳,获得10
31秒前
热木发布了新的文献求助10
31秒前
小王加油啊啊啊完成签到,获得积分10
31秒前
hqq发布了新的文献求助30
34秒前
36秒前
39秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961059
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135400
捐赠科研通 3239738
什么是DOI,文献DOI怎么找? 1790416
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150