Detection of Apple Plant Diseases Using Leaf Images Through Convolutional Neural Network

计算机科学 卷积神经网络 过度拟合 人工智能 深度学习 机器学习 植物病害 上下文图像分类 集合(抽象数据类型) 人工神经网络 模式识别(心理学) 图像(数学) 生物技术 生物 程序设计语言
作者
Vibhor Kumar Vishnoi,Krishan Kumar,B. V. Rathish Kumar,Shashank Mohan,Arfat Ahmad Khan
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 6594-6609 被引量:7
标识
DOI:10.1109/access.2022.3232917
摘要

Plant diseases are a severe cause of crop losses in the agriculture globally. Detection of diseases in plants is difficult and challenging due to the lack of expert knowledge. Deep learning-based models provide promising ways to identify plant diseases using leaf images. However, need of larger training sets, computational complexity, and overfitting, etc. are the major issues with these techniques that still need to be addressed. In this work, a convolutional neural network (CNN) is developed that consists of smaller number of layers leading to lower computational burden. Some augmentation techniques such as shift, shear, scaling, zoom, and flipping are applied to generate additional samples increasing the training set without actually capturing more images. The CNN model is trained for apple crop using a publicly available dataset PlantVillage to identify Scab, Black rot, and Cedar rust diseases in apple leaves. The rigorous experimental results revealed that the proposed model is well fit to identify apple leaf diseases and achieves 98% classification accuracy. It is also evident from the results that it needs lesser amount of storage and takes smaller execution time than several existing deep CNN models. Although, there exist several CNN models for crop disease detection with comparable accuracy, but the proposed model needs lower storage and computational resources. Therefore, it is highly suitable for deploying in handheld devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
dm关闭了dm文献求助
1秒前
jojo完成签到 ,获得积分10
1秒前
2秒前
emily完成签到,获得积分20
2秒前
肆_发布了新的文献求助10
2秒前
A132发布了新的文献求助10
2秒前
酷酷的盼山完成签到,获得积分10
3秒前
Eternity2025发布了新的文献求助10
3秒前
multi完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
taster发布了新的文献求助10
5秒前
缓慢妙芙发布了新的文献求助20
5秒前
ctttt发布了新的文献求助10
5秒前
傲娇的康乃馨完成签到,获得积分20
5秒前
5秒前
we1完成签到,获得积分20
6秒前
聂青枫完成签到,获得积分10
6秒前
完美世界应助蕾蕾蕾采纳,获得10
6秒前
WSGQT完成签到,获得积分10
7秒前
qwe完成签到,获得积分10
7秒前
7秒前
科研小白完成签到,获得积分10
7秒前
7秒前
dd发布了新的文献求助10
8秒前
gdh完成签到,获得积分10
8秒前
充电宝应助漫漫亦慢慢采纳,获得10
8秒前
9秒前
碧蓝靳发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
枫溪发布了新的文献求助10
10秒前
10秒前
Kate发布了新的文献求助10
10秒前
小蘑菇应助踏实志泽采纳,获得10
10秒前
大模型应助JINtian采纳,获得10
10秒前
10秒前
Lucas应助寒冷的泽洋采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665352
求助须知:如何正确求助?哪些是违规求助? 4876309
关于积分的说明 15113352
捐赠科研通 4824419
什么是DOI,文献DOI怎么找? 2582766
邀请新用户注册赠送积分活动 1536717
关于科研通互助平台的介绍 1495328