亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FlightBERT: Binary Encoding Representation for Flight Trajectory Prediction

计算机科学 二进制数 弹道 编码(内存) 代表(政治) 块(置换群论) 算法 人工智能 嵌入 熵(时间箭头) 数学 量子力学 法学 物理 政治 算术 天文 政治学 几何学
作者
Dongyue Guo,Edmond Q. Wu,Yuankai Wu,Jianwei Zhang,Rob Law,Yi Lin
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:37
标识
DOI:10.1109/tits.2022.3219923
摘要

Flight Trajectory Prediction (TP) is an essential task in Air Traffic Control (ATC). Currently, the TP task is usually achieved by regression approaches, which concatenates several scalar attributes of the observation into a low-dimensional vector as the inputs. However, it is difficult to accurately model aircraft motion patterns using low-dimensional features in complex and time-varying ATC environments. To improve the performance of the TP task, in this paper, a novel framework, called FlightBERT, is proposed based on Binary Encoding (BE) representation, which enables us to tackle the TP task as a multi binary classification problem. Specifically, the scalar attributes of the flight trajectory are encoded into binary codes and transformed into a high-dimensional representation by the attribute embedding module. Considering the prior knowledge among flight attributes, an Attribute Correlation Attention (ACoAtt) block is designed to explicitly capture the correlations among the specific attributes. A stacked Transformer block is applied to serve as the backbone network, which is followed by the predictor to generate the outputs. Considering the nature of flight trajectory, a hybrid constrained loss, i.e., combining the mean square error loss with the binary cross-entropy loss, is innovatively designed to optimize the proposed framework. The proposed method is validated on a large-scale dataset, which is collected from the real-world ATC environment. The experimental results demonstrate that the proposed method outperforms other baselines by quantitative and qualitative evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
28秒前
faker完成签到,获得积分10
41秒前
淡定友有完成签到,获得积分10
53秒前
khaosyi完成签到 ,获得积分10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
kmkm发布了新的文献求助10
1分钟前
邬化蛹发布了新的文献求助10
1分钟前
小马甲应助邬化蛹采纳,获得10
1分钟前
2分钟前
2分钟前
老石完成签到 ,获得积分10
2分钟前
556发布了新的文献求助30
2分钟前
2分钟前
搜集达人应助kmkm采纳,获得10
2分钟前
邬化蛹发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
kmkm关注了科研通微信公众号
3分钟前
4分钟前
ckyyds完成签到 ,获得积分10
4分钟前
4分钟前
yuqinghui98完成签到 ,获得积分10
4分钟前
kmkm发布了新的文献求助10
4分钟前
111完成签到 ,获得积分10
4分钟前
5分钟前
赘婿应助科研通管家采纳,获得10
5分钟前
5分钟前
Aurora完成签到 ,获得积分10
5分钟前
5分钟前
kmkm完成签到,获得积分10
6分钟前
6分钟前
6分钟前
无情听南完成签到,获得积分10
6分钟前
6分钟前
赘婿应助米歇尔采纳,获得10
7分钟前
7分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965717
求助须知:如何正确求助?哪些是违规求助? 3510950
关于积分的说明 11155694
捐赠科研通 3245416
什么是DOI,文献DOI怎么找? 1792891
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804216