MNNMDA: Predicting human microbe-disease association via a method to minimize matrix nuclear norm

计算机科学 疾病 正规化(语言学) 相似性(几何) 高斯分布 二部图 矩阵范数 核基质 人工智能 计算生物学 数据挖掘 机器学习 数学 模式识别(心理学) 医学 生物 理论计算机科学 特征向量 化学 病理 遗传学 图形 计算化学 物理 量子力学 图像(数学) DNA 染色质
作者
Haiyan Liu,Pingping Bing,Meijun Zhang,Geng Tian,Jun Ma,Haigang Li,Meihua Bao,Kunhui He,Jianjun He,Binsheng He,Jialiang Yang
出处
期刊:Computational and structural biotechnology journal [Elsevier BV]
卷期号:21: 1414-1423 被引量:10
标识
DOI:10.1016/j.csbj.2022.12.053
摘要

Identifying the potential associations between microbes and diseases is the first step for revealing the pathological mechanisms of microbe-associated diseases. However, traditional culture-based microbial experiments are expensive and time-consuming. Thus, it is critical to prioritize disease-associated microbes by computational methods for further experimental validation. In this study, we proposed a novel method called MNNMDA, to predict microbe-disease associations (MDAs) by applying a Matrix Nuclear Norm method into known microbe and disease data. Specifically, we first calculated Gaussian interaction profile kernel similarity and functional similarity for diseases and microbes. Then we constructed a heterogeneous information network by combining the integrated disease similarity network, the integrated microbe similarity network and the known microbe-disease bipartite network. Finally, we formulated the microbe-disease association prediction problem as a low-rank matrix completion problem, which was solved by minimizing the nuclear norm of a matrix with a few regularization terms. We tested the performances of MNNMDA in three datasets including HMDAD, Disbiome, and Combined Data with small, medium and large sizes respectively. We also compared MNNMDA with 5 state-of-the-art methods including KATZHMDA, LRLSHMDA, NTSHMDA, GATMDA, and KGNMDA, respectively. MNNMDA achieved area under the ROC curves (AUROC) of 0.9536 and 0.9364 respectively on HDMAD and Disbiome, better than the AUCs of compared methods under the 5-fold cross-validation for all microbe-disease associations. It also obtained a relatively good performance with AUROC 0.8858 in the combined data. In addition, MNNMDA was also better than other methods in area under precision and recall curve (AUPR) under the 5-fold cross-validation for all associations, and in both AUROC and AUPR under the 5-fold cross-validation for diseases and the 5-fold cross-validation for microbes. Finally, the case studies on colon cancer and inflammatory bowel disease (IBD) also validated the effectiveness of MNNMDA. In conclusion, MNNMDA is an effective method in predicting microbe-disease associations. The codes and data for this paper are freely available at Github https://github.com/Haiyan-Liu666/MNNMDA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
q792309106发布了新的文献求助10
刚刚
刚刚
1秒前
温柔可乐完成签到,获得积分10
1秒前
QJ关闭了QJ文献求助
5秒前
河狸发布了新的文献求助10
5秒前
6秒前
雷半双完成签到,获得积分10
6秒前
不安幼枫发布了新的文献求助10
6秒前
9秒前
现代白玉完成签到,获得积分10
9秒前
11秒前
11秒前
ding应助aby采纳,获得10
11秒前
13秒前
传奇3应助Manzhen采纳,获得10
13秒前
FashionBoy应助现代白玉采纳,获得10
13秒前
WoxiC发布了新的文献求助10
14秒前
14秒前
毕个业完成签到 ,获得积分10
15秒前
烟花应助q792309106采纳,获得10
16秒前
16秒前
songjin发布了新的文献求助10
16秒前
简单山水发布了新的文献求助10
16秒前
Feng5945发布了新的文献求助20
18秒前
隐形曼青应助TSWAKS采纳,获得10
18秒前
不安幼枫完成签到,获得积分10
18秒前
Billy应助淳于绮兰采纳,获得30
19秒前
开朗的之卉完成签到,获得积分10
19秒前
19秒前
博修发布了新的文献求助10
19秒前
缪甲烷完成签到,获得积分10
20秒前
mingming发布了新的文献求助10
20秒前
英俊的铭应助songjin采纳,获得10
21秒前
CoreyW发布了新的文献求助10
21秒前
搞学术的发布了新的文献求助10
21秒前
QJ关闭了QJ文献求助
22秒前
23秒前
aby发布了新的文献求助10
24秒前
香蕉觅云应助简单山水采纳,获得10
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979611
求助须知:如何正确求助?哪些是违规求助? 3523559
关于积分的说明 11218024
捐赠科研通 3261063
什么是DOI,文献DOI怎么找? 1800385
邀请新用户注册赠送积分活动 879079
科研通“疑难数据库(出版商)”最低求助积分说明 807160