MNNMDA: Predicting human microbe-disease association via a method to minimize matrix nuclear norm

计算机科学 疾病 正规化(语言学) 相似性(几何) 高斯分布 二部图 矩阵范数 核基质 人工智能 计算生物学 数据挖掘 机器学习 数学 模式识别(心理学) 医学 生物 理论计算机科学 特征向量 化学 病理 遗传学 图形 计算化学 物理 量子力学 图像(数学) DNA 染色质
作者
Haiyan Liu,Pingping Bing,Meijun Zhang,Geng Tian,Jun Ma,Haigang Li,Meihua Bao,Kunhui He,Jianjun He,Binsheng He,Jialiang Yang
出处
期刊:Computational and structural biotechnology journal [Elsevier]
卷期号:21: 1414-1423 被引量:10
标识
DOI:10.1016/j.csbj.2022.12.053
摘要

Identifying the potential associations between microbes and diseases is the first step for revealing the pathological mechanisms of microbe-associated diseases. However, traditional culture-based microbial experiments are expensive and time-consuming. Thus, it is critical to prioritize disease-associated microbes by computational methods for further experimental validation. In this study, we proposed a novel method called MNNMDA, to predict microbe-disease associations (MDAs) by applying a Matrix Nuclear Norm method into known microbe and disease data. Specifically, we first calculated Gaussian interaction profile kernel similarity and functional similarity for diseases and microbes. Then we constructed a heterogeneous information network by combining the integrated disease similarity network, the integrated microbe similarity network and the known microbe-disease bipartite network. Finally, we formulated the microbe-disease association prediction problem as a low-rank matrix completion problem, which was solved by minimizing the nuclear norm of a matrix with a few regularization terms. We tested the performances of MNNMDA in three datasets including HMDAD, Disbiome, and Combined Data with small, medium and large sizes respectively. We also compared MNNMDA with 5 state-of-the-art methods including KATZHMDA, LRLSHMDA, NTSHMDA, GATMDA, and KGNMDA, respectively. MNNMDA achieved area under the ROC curves (AUROC) of 0.9536 and 0.9364 respectively on HDMAD and Disbiome, better than the AUCs of compared methods under the 5-fold cross-validation for all microbe-disease associations. It also obtained a relatively good performance with AUROC 0.8858 in the combined data. In addition, MNNMDA was also better than other methods in area under precision and recall curve (AUPR) under the 5-fold cross-validation for all associations, and in both AUROC and AUPR under the 5-fold cross-validation for diseases and the 5-fold cross-validation for microbes. Finally, the case studies on colon cancer and inflammatory bowel disease (IBD) also validated the effectiveness of MNNMDA. In conclusion, MNNMDA is an effective method in predicting microbe-disease associations. The codes and data for this paper are freely available at Github https://github.com/Haiyan-Liu666/MNNMDA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AKACrown发布了新的文献求助20
刚刚
完美的冰绿完成签到,获得积分10
1秒前
2秒前
song完成签到 ,获得积分10
2秒前
3秒前
XFF发布了新的文献求助10
4秒前
6秒前
耍酷鼠标发布了新的文献求助10
7秒前
Wang发布了新的文献求助10
7秒前
8秒前
最牛的kangkang完成签到,获得积分10
8秒前
所所应助xiexiaopa采纳,获得10
9秒前
AKACrown完成签到,获得积分10
10秒前
gate发布了新的文献求助10
10秒前
10秒前
dungaway完成签到,获得积分10
11秒前
木子李完成签到,获得积分10
12秒前
心甘情愿当牛马完成签到,获得积分10
17秒前
17秒前
星空发布了新的文献求助20
18秒前
18秒前
Gzh_NJ完成签到,获得积分10
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
薰硝壤应助科研通管家采纳,获得30
19秒前
慕青应助科研通管家采纳,获得10
19秒前
小马甲应助XFF采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
彭于晏应助科研通管家采纳,获得10
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
咖啡豆应助科研通管家采纳,获得50
20秒前
1640应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
桐桐应助科研通管家采纳,获得10
20秒前
彭于晏应助科研通管家采纳,获得10
20秒前
科目三应助科研通管家采纳,获得10
20秒前
小二郎应助科研通管家采纳,获得10
20秒前
20秒前
希望天下0贩的0应助刘静采纳,获得10
20秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141028
求助须知:如何正确求助?哪些是违规求助? 2791955
关于积分的说明 7801220
捐赠科研通 2448217
什么是DOI,文献DOI怎么找? 1302479
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601226