已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MNNMDA: Predicting human microbe-disease association via a method to minimize matrix nuclear norm

计算机科学 疾病 正规化(语言学) 相似性(几何) 高斯分布 二部图 矩阵范数 核基质 人工智能 计算生物学 数据挖掘 机器学习 数学 模式识别(心理学) 医学 生物 理论计算机科学 特征向量 化学 病理 遗传学 图形 计算化学 物理 量子力学 图像(数学) DNA 染色质
作者
Haiyan Liu,Pingping Bing,Meijun Zhang,Geng Tian,Jun Ma,Haigang Li,Meihua Bao,Kunhui He,Jianjun He,Binsheng He,Jialiang Yang
出处
期刊:Computational and structural biotechnology journal [Elsevier]
卷期号:21: 1414-1423 被引量:25
标识
DOI:10.1016/j.csbj.2022.12.053
摘要

Identifying the potential associations between microbes and diseases is the first step for revealing the pathological mechanisms of microbe-associated diseases. However, traditional culture-based microbial experiments are expensive and time-consuming. Thus, it is critical to prioritize disease-associated microbes by computational methods for further experimental validation. In this study, we proposed a novel method called MNNMDA, to predict microbe-disease associations (MDAs) by applying a Matrix Nuclear Norm method into known microbe and disease data. Specifically, we first calculated Gaussian interaction profile kernel similarity and functional similarity for diseases and microbes. Then we constructed a heterogeneous information network by combining the integrated disease similarity network, the integrated microbe similarity network and the known microbe-disease bipartite network. Finally, we formulated the microbe-disease association prediction problem as a low-rank matrix completion problem, which was solved by minimizing the nuclear norm of a matrix with a few regularization terms. We tested the performances of MNNMDA in three datasets including HMDAD, Disbiome, and Combined Data with small, medium and large sizes respectively. We also compared MNNMDA with 5 state-of-the-art methods including KATZHMDA, LRLSHMDA, NTSHMDA, GATMDA, and KGNMDA, respectively. MNNMDA achieved area under the ROC curves (AUROC) of 0.9536 and 0.9364 respectively on HDMAD and Disbiome, better than the AUCs of compared methods under the 5-fold cross-validation for all microbe-disease associations. It also obtained a relatively good performance with AUROC 0.8858 in the combined data. In addition, MNNMDA was also better than other methods in area under precision and recall curve (AUPR) under the 5-fold cross-validation for all associations, and in both AUROC and AUPR under the 5-fold cross-validation for diseases and the 5-fold cross-validation for microbes. Finally, the case studies on colon cancer and inflammatory bowel disease (IBD) also validated the effectiveness of MNNMDA. In conclusion, MNNMDA is an effective method in predicting microbe-disease associations. The codes and data for this paper are freely available at Github https://github.com/Haiyan-Liu666/MNNMDA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu发布了新的文献求助10
刚刚
善学以致用应助布布采纳,获得10
刚刚
1秒前
yhjjj发布了新的文献求助10
1秒前
yue完成签到 ,获得积分10
1秒前
科研通AI6应助tosaka凛采纳,获得10
2秒前
夏紊完成签到 ,获得积分10
2秒前
2秒前
赘婿应助清秋夜露白采纳,获得10
2秒前
shy完成签到,获得积分20
4秒前
4秒前
6秒前
英勇可乐完成签到,获得积分10
6秒前
橘子猫发布了新的文献求助10
6秒前
7秒前
8秒前
yu完成签到,获得积分10
8秒前
皮皮团发布了新的文献求助10
9秒前
Akim应助李希采纳,获得10
9秒前
黑猫乾杯应助Mask采纳,获得10
10秒前
尚尚发布了新的文献求助10
10秒前
FashionBoy应助紫菜采纳,获得10
10秒前
秋殤发布了新的文献求助10
11秒前
淡淡尔烟完成签到,获得积分10
11秒前
13秒前
14秒前
14秒前
朴素的眼神完成签到,获得积分10
14秒前
14秒前
15秒前
璀璨的孤狼完成签到 ,获得积分10
16秒前
momo完成签到,获得积分20
17秒前
17秒前
17秒前
Ttttsyu完成签到,获得积分10
17秒前
nicholas发布了新的文献求助10
18秒前
柔弱河马发布了新的文献求助10
19秒前
19秒前
Zhang完成签到 ,获得积分10
20秒前
mtt发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590041
求助须知:如何正确求助?哪些是违规求助? 4674484
关于积分的说明 14794065
捐赠科研通 4629905
什么是DOI,文献DOI怎么找? 2532488
邀请新用户注册赠送积分活动 1501195
关于科研通互助平台的介绍 1468558