UIU-Net: U-Net in U-Net for Infrared Small Object Detection

计算机科学 人工智能 网(多面体) 计算机视觉 数学 几何学
作者
Xin Wu,Danfeng Hong,Jocelyn Chanussot
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 364-376 被引量:325
标识
DOI:10.1109/tip.2022.3228497
摘要

Learning-based infrared small object detection methods currently rely heavily on the classification backbone network. This tends to result in tiny object loss and feature distinguishability limitations as the network depth increases. Furthermore, small objects in infrared images are frequently emerged bright and dark, posing severe demands for obtaining precise object contrast information. For this reason, we in this paper propose a simple and effective "U-Net in U-Net" framework, UIU-Net for short, and detect small objects in infrared images. As the name suggests, UIU-Net embeds a tiny U-Net into a larger U-Net backbone, enabling the multi-level and multi-scale representation learning of objects. Moreover, UIU-Net can be trained from scratch, and the learned features can enhance global and local contrast information effectively. More specifically, the UIU-Net model is divided into two modules: the resolution-maintenance deep supervision (RM-DS) module and the interactive-cross attention (IC-A) module. RM-DS integrates Residual U-blocks into a deep supervision network to generate deep multi-scale resolution-maintenance features while learning global context information. Further, IC-A encodes the local context information between the low-level details and high-level semantic features. Extensive experiments conducted on two infrared single-frame image datasets, i.e., SIRST and Synthetic datasets, show the effectiveness and superiority of the proposed UIU-Net in comparison with several state-of-the-art infrared small object detection methods. The proposed UIU-Net also produces powerful generalization performance for video sequence infrared small object datasets, e.g., ATR ground/air video sequence dataset. The codes of this work are available openly at https://github.com/danfenghong/IEEE_TIP_UIU-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助学医不要停采纳,获得10
刚刚
刚刚
2秒前
zhang发布了新的文献求助10
2秒前
3秒前
冯大夫发布了新的文献求助10
3秒前
4秒前
4秒前
wph发布了新的文献求助30
4秒前
luoluo完成签到,获得积分10
5秒前
6秒前
6秒前
我喜欢下雪完成签到,获得积分20
7秒前
zhang完成签到,获得积分10
8秒前
贝肯尼发布了新的文献求助10
9秒前
sqk应助小巧雪碧采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
11秒前
iNk应助科研通管家采纳,获得10
11秒前
iNk应助科研通管家采纳,获得10
12秒前
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
iNk应助科研通管家采纳,获得10
12秒前
iNk应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
ztll发布了新的文献求助50
12秒前
_呱_完成签到,获得积分10
13秒前
13秒前
fool发布了新的文献求助10
14秒前
14秒前
SciGPT应助刻苦不弱采纳,获得10
19秒前
粉粉银耳汤完成签到,获得积分10
20秒前
21秒前
疯狂的大山完成签到,获得积分10
21秒前
ding应助tkdzjr12345采纳,获得10
22秒前
Teng完成签到 ,获得积分10
22秒前
称心太阳发布了新的文献求助10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352973
求助须知:如何正确求助?哪些是违规求助? 2977782
关于积分的说明 8682043
捐赠科研通 2658903
什么是DOI,文献DOI怎么找? 1455990
科研通“疑难数据库(出版商)”最低求助积分说明 674206
邀请新用户注册赠送积分活动 664884