清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

SO2 Prediction for Wet Flue Gas Desulfurization Based on Improved Long and Short-Term Memory

烟气脱硫 人工神经网络 计算机科学 可靠性(半导体) 泥浆 循环神经网络 过程(计算) 反向传播 烟气 功率(物理) 数据挖掘 人工智能 工程类 废物管理 物理 量子力学 环境工程 操作系统
作者
Yujin Xie,Tao Chi,Zhengjun Yu,Xuobo Chen
标识
DOI:10.1109/summa57301.2022.9973958
摘要

The general thermal power plant wet flue gas desulfurization (WFGD) process suffers from slurry resource wastage and unstable SO2 content in the outlet flue gas. Considering the complicated mechanistic modeling of conventional WFGD systems and the time-series characteristics of data., this paper investigates the construction of a long and short-term memory (LSTM) neural network., including two long and shortterm memory layers., two rectified linear unit (ReLU) function layers., a fully connected layer., and input and output layers., for the prediction of the main indicators of WFGD systems. Among them., data processing techniques are used to determine each input variable of the model and the output variable with SO2 exported; a certain percentage of data is used to verify the reliability of the model. 20.,000 sets of data are used for training., 1.,000 sets of data are used for testing., and 1.,000 sets of data are used to verify the accuracy of the model. The results show that the established improved LSTM model has higher prediction accuracy., which is 97.7%., compared with back propagation (BP) neural network., recurrent neural network (RNN)., and the basic LSTM model., which can achieve more accurate control over the use of relevant resources and reduce waste., and can be used as one of the scientific methods for system optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
9秒前
科研通AI6应助Criminology34采纳,获得100
38秒前
42秒前
herococa应助科研通管家采纳,获得10
53秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
1分钟前
2分钟前
后陡门爱神完成签到 ,获得积分10
2分钟前
科研通AI6应助Criminology34采纳,获得100
2分钟前
勤劳的颤完成签到 ,获得积分10
2分钟前
滕皓轩完成签到 ,获得积分10
2分钟前
Ava应助Kyrie采纳,获得10
2分钟前
某奈在看海完成签到,获得积分10
2分钟前
2分钟前
orixero应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
莫莫完成签到 ,获得积分10
3分钟前
Kyrie完成签到,获得积分10
3分钟前
研友_8WOBM8发布了新的文献求助10
3分钟前
4分钟前
冷傲半邪完成签到,获得积分10
4分钟前
yyds给yyds的求助进行了留言
4分钟前
研友_nxw2xL完成签到,获得积分10
4分钟前
如歌完成签到,获得积分10
4分钟前
4分钟前
烂漫的绿茶完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
yyds发布了新的文献求助30
5分钟前
量子星尘发布了新的文献求助10
6分钟前
蝎子莱莱xth完成签到,获得积分10
6分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
6分钟前
Square完成签到,获得积分10
6分钟前
BowieHuang应助科研通管家采纳,获得10
6分钟前
芳菲依旧应助紫熊采纳,获得30
7分钟前
7分钟前
haifenghou应助紫熊采纳,获得20
7分钟前
7分钟前
香蕉诗蕊应助紫熊采纳,获得10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658233
求助须知:如何正确求助?哪些是违规求助? 4818796
关于积分的说明 15081057
捐赠科研通 4816735
什么是DOI,文献DOI怎么找? 2577564
邀请新用户注册赠送积分活动 1532491
关于科研通互助平台的介绍 1491120