亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Proximal femur parameter measurement via improved PointNet++

分割 计算机科学 人工智能 Sørensen–骰子系数 股骨 重复性 股骨头 精确性和召回率 特征(语言学) 噪音(视频) 计算机视觉 模式识别(心理学) 口腔正畸科 图像分割 医学 外科 数学 统计 图像(数学) 语言学 哲学
作者
Jiayu Yang,Zhe Li,Pengyu Zhan,Xinghua Li,Kunzheng Wang,Jiawei Han,Pei Yang
出处
期刊:International Journal of Medical Robotics and Computer Assisted Surgery [Wiley]
卷期号:19 (3) 被引量:1
标识
DOI:10.1002/rcs.2494
摘要

Abstract Background Femoral morphological studies and parameter measurements play a crucial role in diagnosing hip joint disease, preoperative planning for total hip arthroplasty, and prosthesis design. Doctors usually perform parameter measurements manually in clinical practice, but it is time‐consuming and labor‐intensive. Moreover, the results rely heavily on the doctor's experience, and the repeatability is poor. Therefore, the accurate and automatic measurement methods of proximal femoral parameters are of great value. Method We collected 300 cases of clinical CT data of the femur. We introduced the adaptive function adjustment module to the neural network PointNet++ to strengthen the global feature extraction of the point cloud for improving the accuracy of femur segmentation. We used the improved PointNet++ network to segment the femur into three parts: femoral head, femoral neck, and femoral shaft. We evaluated the segmentation accracy using Dice Coefficient, MIoU, recall, and precision indicators. We achieved the automatic measurement of the proximal femoral parameters using the shape fitting algorithms, and compared the automatic and manual measurement results. Results The Dice, MIoU, recall and precision indicator of the improved segmentation algorithm reached 98.05%, 96.55%, 96.63%, and 96.03%, respectively. The comparison between automatic and manual measurement results showed that the mean accuracies of all parameters were above 95%, the mean errors were less than 5 mm and 3°, and the ICC values were more than 0.8, indicating that the automatic measurement results were accurate. Conclusion Our improved PointNet++ network provided high‐precision segmentation of the femur. We further completed automatic measurement of the femur parameters and verified its high accuracy. This method is of great value for the diagnosis and preoperative planning of hip diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清飏应助karstbing采纳,获得220
6秒前
田様应助Y123采纳,获得10
19秒前
27秒前
31秒前
31秒前
今后应助科研通管家采纳,获得10
31秒前
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
Y123发布了新的文献求助10
32秒前
38秒前
领导范儿应助Y123采纳,获得10
41秒前
平淡如天完成签到,获得积分10
43秒前
caca完成签到,获得积分0
50秒前
54秒前
yishujia完成签到,获得积分20
55秒前
April发布了新的文献求助10
59秒前
脱锦涛完成签到 ,获得积分10
1分钟前
汉堡包应助勤劳影子采纳,获得10
1分钟前
April完成签到,获得积分10
1分钟前
1分钟前
1分钟前
越听初发布了新的文献求助10
1分钟前
JamesPei应助阔达的凝丝采纳,获得10
1分钟前
研友_LX62KZ发布了新的文献求助10
1分钟前
Tumumu完成签到,获得积分0
1分钟前
1分钟前
阔达的凝丝给阔达的凝丝的求助进行了留言
1分钟前
犬来八荒发布了新的文献求助10
1分钟前
温暖大米完成签到 ,获得积分0
2分钟前
越听初完成签到,获得积分10
2分钟前
哈哈哈完成签到 ,获得积分10
2分钟前
浮游应助犬来八荒采纳,获得10
2分钟前
浮游应助犬来八荒采纳,获得10
2分钟前
2分钟前
haha完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
小二郎应助XX采纳,获得10
2分钟前
2分钟前
null应助科研通管家采纳,获得20
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634800
求助须知:如何正确求助?哪些是违规求助? 4733832
关于积分的说明 14989260
捐赠科研通 4792487
什么是DOI,文献DOI怎么找? 2559621
邀请新用户注册赠送积分活动 1519959
关于科研通互助平台的介绍 1480023