Proximal femur parameter measurement via improved PointNet++

分割 计算机科学 人工智能 Sørensen–骰子系数 股骨 重复性 股骨头 精确性和召回率 特征(语言学) 噪音(视频) 计算机视觉 模式识别(心理学) 口腔正畸科 图像分割 医学 外科 数学 统计 图像(数学) 哲学 语言学
作者
Jiayu Yang,Zhe Li,Pengyu Zhan,Xinghua Li,Kunzheng Wang,Jiawei Han,Pei Yang
出处
期刊:International Journal of Medical Robotics and Computer Assisted Surgery [Wiley]
卷期号:19 (3) 被引量:1
标识
DOI:10.1002/rcs.2494
摘要

Abstract Background Femoral morphological studies and parameter measurements play a crucial role in diagnosing hip joint disease, preoperative planning for total hip arthroplasty, and prosthesis design. Doctors usually perform parameter measurements manually in clinical practice, but it is time‐consuming and labor‐intensive. Moreover, the results rely heavily on the doctor's experience, and the repeatability is poor. Therefore, the accurate and automatic measurement methods of proximal femoral parameters are of great value. Method We collected 300 cases of clinical CT data of the femur. We introduced the adaptive function adjustment module to the neural network PointNet++ to strengthen the global feature extraction of the point cloud for improving the accuracy of femur segmentation. We used the improved PointNet++ network to segment the femur into three parts: femoral head, femoral neck, and femoral shaft. We evaluated the segmentation accracy using Dice Coefficient, MIoU, recall, and precision indicators. We achieved the automatic measurement of the proximal femoral parameters using the shape fitting algorithms, and compared the automatic and manual measurement results. Results The Dice, MIoU, recall and precision indicator of the improved segmentation algorithm reached 98.05%, 96.55%, 96.63%, and 96.03%, respectively. The comparison between automatic and manual measurement results showed that the mean accuracies of all parameters were above 95%, the mean errors were less than 5 mm and 3°, and the ICC values were more than 0.8, indicating that the automatic measurement results were accurate. Conclusion Our improved PointNet++ network provided high‐precision segmentation of the femur. We further completed automatic measurement of the femur parameters and verified its high accuracy. This method is of great value for the diagnosis and preoperative planning of hip diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzmp应助Jay采纳,获得20
刚刚
爱吃蔬菜发布了新的文献求助10
1秒前
时尚松鼠完成签到,获得积分10
1秒前
3秒前
浮游应助神奇海螺采纳,获得10
3秒前
3秒前
4秒前
AA完成签到 ,获得积分10
4秒前
打打应助激动的项链采纳,获得10
4秒前
Raojas完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
Akim应助Sugarhm采纳,获得10
6秒前
罗那发布了新的文献求助10
7秒前
7秒前
xcky0917完成签到,获得积分10
8秒前
LiLi完成签到,获得积分10
8秒前
赫连山菡发布了新的文献求助10
9秒前
eddy发布了新的文献求助10
9秒前
bkagyin应助12采纳,获得10
9秒前
张zhang发布了新的文献求助10
10秒前
HH发布了新的文献求助10
10秒前
10秒前
10秒前
所所应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
10秒前
Hello应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
Criminology34应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933690
求助须知:如何正确求助?哪些是违规求助? 4201746
关于积分的说明 13054958
捐赠科研通 3975817
什么是DOI,文献DOI怎么找? 2178602
邀请新用户注册赠送积分活动 1194932
关于科研通互助平台的介绍 1106316