Proximal femur parameter measurement via improved PointNet++

分割 计算机科学 人工智能 Sørensen–骰子系数 股骨 重复性 股骨头 精确性和召回率 特征(语言学) 噪音(视频) 计算机视觉 模式识别(心理学) 口腔正畸科 图像分割 医学 外科 数学 统计 图像(数学) 哲学 语言学
作者
Jiayu Yang,Zhe Li,Pengyu Zhan,Xinghua Li,Kunzheng Wang,Jiawei Han,Pei Yang
出处
期刊:International Journal of Medical Robotics and Computer Assisted Surgery [Wiley]
卷期号:19 (3) 被引量:1
标识
DOI:10.1002/rcs.2494
摘要

Abstract Background Femoral morphological studies and parameter measurements play a crucial role in diagnosing hip joint disease, preoperative planning for total hip arthroplasty, and prosthesis design. Doctors usually perform parameter measurements manually in clinical practice, but it is time‐consuming and labor‐intensive. Moreover, the results rely heavily on the doctor's experience, and the repeatability is poor. Therefore, the accurate and automatic measurement methods of proximal femoral parameters are of great value. Method We collected 300 cases of clinical CT data of the femur. We introduced the adaptive function adjustment module to the neural network PointNet++ to strengthen the global feature extraction of the point cloud for improving the accuracy of femur segmentation. We used the improved PointNet++ network to segment the femur into three parts: femoral head, femoral neck, and femoral shaft. We evaluated the segmentation accracy using Dice Coefficient, MIoU, recall, and precision indicators. We achieved the automatic measurement of the proximal femoral parameters using the shape fitting algorithms, and compared the automatic and manual measurement results. Results The Dice, MIoU, recall and precision indicator of the improved segmentation algorithm reached 98.05%, 96.55%, 96.63%, and 96.03%, respectively. The comparison between automatic and manual measurement results showed that the mean accuracies of all parameters were above 95%, the mean errors were less than 5 mm and 3°, and the ICC values were more than 0.8, indicating that the automatic measurement results were accurate. Conclusion Our improved PointNet++ network provided high‐precision segmentation of the femur. We further completed automatic measurement of the femur parameters and verified its high accuracy. This method is of great value for the diagnosis and preoperative planning of hip diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巴达天使完成签到,获得积分10
4秒前
江三村完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
22秒前
CyberHamster完成签到,获得积分10
32秒前
xiaohong完成签到,获得积分10
35秒前
朱比特完成签到,获得积分10
36秒前
37秒前
zmuzhang2019发布了新的文献求助10
43秒前
onestepcloser完成签到 ,获得积分0
43秒前
zoe完成签到 ,获得积分10
44秒前
发嗲的慕蕊完成签到 ,获得积分10
45秒前
Linson完成签到,获得积分10
46秒前
顾矜应助赵三岁采纳,获得10
1分钟前
yyy2025完成签到,获得积分10
1分钟前
木雨亦潇潇完成签到,获得积分10
1分钟前
香蕉觅云应助nine2652采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
芳华如梦完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
土豆丝完成签到 ,获得积分10
1分钟前
琦琦完成签到,获得积分10
1分钟前
zzzz完成签到,获得积分20
1分钟前
GEZIKU完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
赵三岁发布了新的文献求助10
1分钟前
wwb完成签到,获得积分10
1分钟前
2分钟前
2分钟前
肯德基没有黄焖鸡完成签到 ,获得积分10
2分钟前
能干冰露完成签到,获得积分10
2分钟前
牛奶拌可乐完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助30
2分钟前
周小鱼完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
老张完成签到,获得积分10
2分钟前
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022