亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Redox‐mediated Processes

氧化还原 流动电池 电子转移 电池(电) 化学 化学物理 储能 材料科学 纳米技术 电极 无机化学 光化学 热力学 物理化学 物理 电解质 功率(物理)
作者
Danick Reynard,Mahdi Moghaddam,Cedrik Wiberg,Silver Sepp,Pekka Peljo,Hubert H. Girault
标识
DOI:10.1002/9783527832767.ch5
摘要

Chapter 5 Redox-mediated Processes Danick Reynard, Danick Reynard EPFL Valais Wallis, École Polytechnique Fédérale de Lausanne, Laboratoire d'Electrochimie Physique et Analytique, Rue de l'Industrie 17, Case Postale 440, CH-1951 Sion, SwitzerlandSearch for more papers by this authorMahdi Moghaddam, Mahdi Moghaddam University of Turku, Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, 20014 Turku, FinlandSearch for more papers by this authorCedrik Wiberg, Cedrik Wiberg University of Turku, Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, 20014 Turku, FinlandSearch for more papers by this authorSilver Sepp, Silver Sepp University of Turku, Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, 20014 Turku, FinlandSearch for more papers by this authorPekka Peljo, Pekka Peljo University of Turku, Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, 20014 Turku, FinlandSearch for more papers by this authorHubert H. Girault, Hubert H. Girault EPFL Valais Wallis, École Polytechnique Fédérale de Lausanne, Laboratoire d'Electrochimie Physique et Analytique, Rue de l'Industrie 17, Case Postale 440, CH-1951 Sion, SwitzerlandSearch for more papers by this author Danick Reynard, Danick Reynard EPFL Valais Wallis, École Polytechnique Fédérale de Lausanne, Laboratoire d'Electrochimie Physique et Analytique, Rue de l'Industrie 17, Case Postale 440, CH-1951 Sion, SwitzerlandSearch for more papers by this authorMahdi Moghaddam, Mahdi Moghaddam University of Turku, Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, 20014 Turku, FinlandSearch for more papers by this authorCedrik Wiberg, Cedrik Wiberg University of Turku, Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, 20014 Turku, FinlandSearch for more papers by this authorSilver Sepp, Silver Sepp University of Turku, Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, 20014 Turku, FinlandSearch for more papers by this authorPekka Peljo, Pekka Peljo University of Turku, Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, 20014 Turku, FinlandSearch for more papers by this authorHubert H. Girault, Hubert H. Girault EPFL Valais Wallis, École Polytechnique Fédérale de Lausanne, Laboratoire d'Electrochimie Physique et Analytique, Rue de l'Industrie 17, Case Postale 440, CH-1951 Sion, SwitzerlandSearch for more papers by this author Book Editor(s):Christina Roth, Christina RothSearch for more papers by this authorJens Noack, Jens NoackSearch for more papers by this authorMaria Skyllas-Kazacos, Maria Skyllas-KazacosSearch for more papers by this author First published: 06 January 2023 https://doi.org/10.1002/9783527832767.ch5 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Summary In 2006, the concept of redox targeting was introduced in which solubilized redox-active molecules are used to mediate reversible electron transfer reactions. The aim was to address conductivity concerns rising from insulating lithium-insertion material (e.g. LiFePO 4 particles) by using freely diffusing molecules as relays between the current collector and the solid electroactive material. The solubilized molecules were selected such that the standard potential window matches the Fermi level of the solid material to allow spontaneous and reversible charge transfer at the solid–liquid interface. In 2013, the concept was further developed to enhance the energy density of a flow battery. The redox-mediated flow battery includes both solid redox materials (redox booster stored in the tank) and solubilized redox species (redox mediators) to store and carry the charge of the battery, respectively. The mediators are reversibly oxidized or reduced inside the flow cell and transported into the charge storage tanks, where they will drive mediated-electron transfer reactions to charge and discharge the redox boosters. High-energy density solid redox materials can be used to boost the relatively low energy density of a conventional flow battery. In this chapter, we will first discuss the fundamental theory behind redox-mediated processes. Then, we will provide a complete and detailed literature review on reported systems emerging from this concept in the field of redox-flow battery going from redox solid booster to dual-circuit flow battery. References Dennison , C.R. , Vrubel , H. , Amstutz , V. et al. ( 2015 ). Redox flow batteries, hydrogen and distributed storage . Chimia (Aarau) 69 ( 12 ): 753 – 758 . https://doi.org/10.2533/chimia.2015.753 . Amstutz , V. , Toghill , K.E. , Powlesland , F. et al. ( 2014 ). Renewable hydrogen generation from a dual-circuit redox flow battery . Energy & Environmental Science 7 ( 7 ): 2350 – 2358 . https://doi.org/10.1039/C4EE00098F . Reynard , D. , Bolik-Coulon , G. , Maye , S. , and Girault , H.H. ( 2020 ). Hydrogen production on demand by redox-mediated electrocatalysis: a kinetic study . Chemical Engineering Journal 126721 . https://doi.org/10.1016/j.cej.2020.126721 . Peljo , P. , Vrubel , H. , Amstutz , V. et al. ( 2016 ). All-vanadium dual circuit redox flow battery for renewable hydrogen generation and desulfurisation . Green Chemistry 18 ( 6 ): 1785 – 1797 . https://doi.org/10.1039/C5GC02196K . Peljo , P. , Scanlon , M.D. , Olaya , A.J. et al. ( 2017 ). Redox electrocatalysis of floating nanoparticles: determining electrocatalytic properties without the influence of solid supports . Journal of Physical Chemistry Letters 8 ( 15 ): 3564 – 3575 . https://doi.org/10.1021/acs.jpclett.7b00685 . Ligen , Y. ( 2020 ) Electrochemical systems for hydrogen fuel cell and battery electric vehicle infrastructure https://infoscience.epfl.ch/record/282095 (accessed 25 June 2021). https://doi.org/10.5075/epfl-thesis-7916 . Ligen , Y. , Vrubel , H. , and Girault , H. ( 2019 ). Local energy storage and stochastic modeling for ultrafast charging stations . Energies 12 ( 10 ): 1986 . https://doi.org/10.3390/en12101986 . Amstutz , V. , Toghill , K. E. , Comninellis , C. , and Girault , H. H. ( 2017 ). Redox flow battery for hydrogen generation . US9543609B2, January 10, 2017. Reynard , D. , Maye , S. , Peljo , P. et al. ( 2020 ). Vanadium–manganese redox flow battery: study of MnIII disproportionation in the presence of other metallic ions . Chemistry – A European Journal 26 ( 32 ): 7250 – 7257 . https://doi.org/10.1002/chem.202000340 . Reynard , D. and Girault , H. ( 2021 ). Combined hydrogen production and electricity storage using a vanadium-manganese redox dual-flow battery . Cell Reports Physical Science 100556 . https://doi.org/10.1016/j.xcrp.2021.100556 . Piwek , J. , Dennison , C.R. , Frackowiak , E. et al. ( 2019 ). Vanadium-oxygen cell for positive electrolyte discharge in dual-circuit vanadium redox flow battery . Journal of Power Sources 439 : 227075 . https://doi.org/10.1016/j.jpowsour.2019.227075 . Sánchez-Díez , E. , Ventosa , E. , Guarnieri , M. et al. ( 2021 ). Redox flow batteries: status and perspective towards sustainable stationary energy storage . Journal of Power Sources 481 : 228804 . https://doi.org/10.1016/j.jpowsour.2020.228804 . Doetsch , C. and Pohlig , A. ( 2020 ). The use of flow batteries in storing electricity for national grids , Chpater 13. In: Future Energy , 3 e (ed. T.M. Letcher ), 263 – 277 . Elsevier https://doi.org/10.1016/B978-0-08-102886-5.00013-X . Vesborg , P.C.K. and Jaramillo , T.F. ( 2012 ). Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy . RSC Advances 2 ( 21 ): 7933 – 7947 . https://doi.org/10.1039/C2RA20839C . Qi , Z. and Koenig , G.M. ( 2017 ). Review article: flow battery systems with solid electroactive materials . Journal of Vacuum Science & Technology B 35 ( 4 ): 040801 . https://doi.org/10.1116/1.4983210 . Heller , A. and Feldman , B. ( 2008 ). Electrochemical glucose sensors and their applications in diabetes management . Chemical Reviews 108 ( 7 ): 2482 – 2505 . https://doi.org/10.1021/cr068069y . Yan , R. and Wang , Q. ( 2018 ). Redox-targeting-based flow batteries for large-scale energy storage . Advanced Materials 30 ( 47 ): 1 – 13 . https://doi.org/10.1002/adma.201802406 . Chen , Y. , Zhou , M. , Xia , Y. et al. ( 2019 ). A stable and high-capacity redox targeting-based electrolyte for aqueous flow batteries . Joule 3 ( 9 ): 2255 – 2267 . https://doi.org/10.1016/j.joule.2019.06.007 . Gentil , S. , Reynard , D. , and Girault , H.H. ( 2020 ). Aqueous organic and redox-mediated redox flow batteries: a review . Current Opinion in Electrochemistry 21 : 7 – 13 . https://doi.org/10.1016/j.coelec.2019.12.006 . Moghaddam , M. , Sepp , S. , Wiberg , C. et al. ( 2021 ). Thermodynamics, charge transfer and practical considerations of solid boosters in redox flow batteries . Molecules 26 ( 8 ): 2111 . https://doi.org/10.3390/molecules26082111 . Zhou , M. , Huang , Q. , Pham Truong , T.N. et al. ( 2017 ). Nernstian-potential-driven redox-targeting reactions of battery materials . Chem 3 ( 6 ): 1036 – 1049 . https://doi.org/10.1016/j.chempr.2017.10.003 . Wang , Q. , Zakeeruddin , S.M. , Wang , D. et al. ( 2006 ). Redox targeting of insulating electrode materials: a new approach to high-energy-density batteries . Angewandte Chemie, International Edition 45 ( 48 ): 8197 – 8200 . https://doi.org/10.1002/anie.200602891 . Huang , Q. , Li , H. , Grätzel , M. , and Wang , Q. ( 2013 ). Reversible chemical delithiation/lithiation of LiFePO 4 : towards a redox flow lithium-ion battery . Physical Chemistry Chemical Physics 15 ( 6 ): 1793 – 1797 . https://doi.org/10.1039/c2cp44466f . Pan , F. , Yang , J. , Huang , Q. et al. ( 2014 ). Redox targeting of anatase TiO 2 for redox flow lithium-ion batteries . Advanced Energy Materials 4 ( 15 ): 1400567 . https://doi.org/10.1002/aenm.201400567 . Huang , Q. , Yang , J. , Ng , C.B. et al. ( 2016 ). A redox flow lithium battery based on the redox targeting reactions between LiFePO 4 and iodide . Energy & Environmental Science 9 ( 3 ): 917 – 921 . https://doi.org/10.1039/C5EE03764F . Zanzola , E. , Dennison , C.R. , Battistel , A. et al. ( 2017 ). Redox solid energy boosters for flow batteries: polyani line as a case study . Electrochimica Acta 235 : 664 – 671 . https://doi.org/10.1016/j.electacta.2017.03.084 . Zanzola , E. , Gentil , S. , Gschwend , G. et al. ( 2019 ). Solid electrochemical energy storage for aqueous redox flow batteries: the case of copper hexacyanoferrate . Electrochimica Acta 321 : https://doi.org/10.1016/j.electacta.2019.134704 . Páez , T. , Martínez-Cuezva , A. , Palma , J. , and Ventosa , E. ( 2019 ). Mediated alkaline flow batteries: from fundamentals to application . ACS Applied Energy Materials 2 ( 11 ): 8328 – 8336 . https://doi.org/10.1021/acsaem.9b01826 . Zhou , M. , Chen , Y. , Salla , M. et al. ( 2020 ). Single-molecule redox-targeting reactions for a PH-neutral aqueous organic redox flow battery . Angewandte Chemie International Edition 59 ( 34 ): 14286 – 14291 . https://doi.org/10.1002/anie.202004603 . Wang , X. , Zhou , M. , Zhang , F. et al. ( 2021 ). Redox targeting of energy materials . Current Opinion in Electrochemistry 29 : 100743 . https://doi.org/10.1016/j.coelec.2021.100743 . Vivo-Vilches , J.F. , Nadeina , A. , Rahbani , N. et al. ( 2021 ). LiFePO 4 -Ferri/ferrocyanide redox targeting aqueous posolyte: set-up, efficiency and kinetics . Journal of Power Sources 488 ( December 2020 ): 229387 . https://doi.org/10.1016/j.jpowsour.2020.229387 . Karthikeyan , D.K. , Sikha , G. , and White , R.E. ( 2008 ). Thermodynamic model development for lithium intercalation electrodes . Journal of Power Sources 185 ( 2 ): 1398 – 1407 . https://doi.org/10.1016/j.jpowsour.2008.07.077 . Zanzola , E. , Gentil , S. , Gschwend , G. et al. ( 2019 ). Solid electrochemical energy storage for aqueous redox flow batteries: the case of copper hexacyanoferrate . Electrochimica Acta 321 : 134704 . https://doi.org/10.1016/j.electacta.2019.134704 . Wessells , C.D. , Huggins , R.A. , and Cui , Y. ( 2011 ). Copper hexacyanoferrate battery electrodes with long cycle life and high power . Nature Communications 2 ( 1 ): 2 – 6 . https://doi.org/10.1038/ncomms1563 . Bryans , D. , Amstutz , V. , Girault , H.H. , and Berlouis , L.E.A. ( 2018 ). Characterisation of a 200 Kw/400 Kwh vanadium redox flow battery . Batteries 4 ( 4 ): https://doi.org/10.3390/batteries4040054 . Kuss , C. , Carmant-Dérival , M. , Trinh , N.D. et al. ( 2014 ). Kinetics of heterosite iron phosphate lithiation by chemical reduction . Journal of Physical Chemistry C 118 ( 34 ): 19524 – 19528 . https://doi.org/10.1021/jp502346f . Gupta , D. and Koenig , G.M. ( 2020 ). Analysis of chemical and electrochemical lithiation/delithiation of a lithium-ion cathode material . Journal of the Electrochemical Society 167 ( 2 ): 020537 . https://doi.org/10.1149/1945-7111/ab6bbf . Jennings , J.R. , Huang , Q. , and Wang , Q. ( 2015 ). Kinetics of LixFePO 4 lithiation/delithiation by ferrocene-based redox mediators: an electrochemical approach . Journal of Physical Chemistry C 119 ( 31 ): 17522 – 17528 . https://doi.org/10.1021/acs.jpcc.5b03561 . Yan , R. , Ghilane , J. , Phuah , K.C. et al. ( 2018 ). Determining Li+-coupled redox targeting reaction kinetics of battery materials with scanning electrochemical microscopy . Journal of Physical Chemistr y Letters 9 ( 3 ): 491 – 496 . https://doi.org/10.1021/acs.jpclett.7b03136 . Jin , S. , Fell , E.M. , Vina-Lopez , L. et al. ( 2020 ). Near neutral pH redox flow battery with low permeability and long-lifetime phosphonated viologen active species . Adv. Energy Mater. 10 , 2000100 . https://onlinelibrary.wiley.com/doi/10.1002/aenm.202000100 . Flow Batteries: From Fundamentals to Applications, Volume 2 ReferencesRelatedInformation

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
小贾爱喝冰美式完成签到 ,获得积分10
5秒前
10秒前
yb完成签到,获得积分10
13秒前
长风发布了新的文献求助10
15秒前
26秒前
真实的小玉完成签到,获得积分10
26秒前
31秒前
万能图书馆应助Atopos采纳,获得10
49秒前
56秒前
维棋完成签到 ,获得积分10
57秒前
Atopos发布了新的文献求助10
1分钟前
1分钟前
长风完成签到 ,获得积分10
1分钟前
1分钟前
氯雷他定发布了新的文献求助10
1分钟前
1分钟前
房谷槐发布了新的文献求助10
1分钟前
nana发布了新的文献求助10
1分钟前
无极微光应助dawn采纳,获得20
1分钟前
YifanWang完成签到,获得积分0
1分钟前
1分钟前
kazemi完成签到,获得积分10
1分钟前
InsanityK发布了新的文献求助50
1分钟前
jcksonzhj完成签到,获得积分10
2分钟前
研友_VZG7GZ应助无限的妖妖采纳,获得10
2分钟前
上官若男应助科研通管家采纳,获得50
2分钟前
2分钟前
暮然完成签到,获得积分10
2分钟前
sylar发布了新的文献求助10
2分钟前
2分钟前
郭德久完成签到 ,获得积分0
2分钟前
热心妍发布了新的文献求助10
2分钟前
暴躁咩完成签到 ,获得积分10
2分钟前
柒姐完成签到,获得积分10
3分钟前
bkagyin应助Faria采纳,获得10
3分钟前
3分钟前
李健应助YOG采纳,获得10
3分钟前
3分钟前
7373完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
《The Emergency Nursing High-Yield Guide》 (或简称为 Emergency Nursing High-Yield Essentials) 500
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5880530
求助须知:如何正确求助?哪些是违规求助? 6573835
关于积分的说明 15689975
捐赠科研通 5000230
什么是DOI,文献DOI怎么找? 2694237
邀请新用户注册赠送积分活动 1636102
关于科研通互助平台的介绍 1593477