摘要
Chapter 5 Redox-mediated Processes Danick Reynard, Danick Reynard EPFL Valais Wallis, École Polytechnique Fédérale de Lausanne, Laboratoire d'Electrochimie Physique et Analytique, Rue de l'Industrie 17, Case Postale 440, CH-1951 Sion, SwitzerlandSearch for more papers by this authorMahdi Moghaddam, Mahdi Moghaddam University of Turku, Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, 20014 Turku, FinlandSearch for more papers by this authorCedrik Wiberg, Cedrik Wiberg University of Turku, Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, 20014 Turku, FinlandSearch for more papers by this authorSilver Sepp, Silver Sepp University of Turku, Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, 20014 Turku, FinlandSearch for more papers by this authorPekka Peljo, Pekka Peljo University of Turku, Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, 20014 Turku, FinlandSearch for more papers by this authorHubert H. Girault, Hubert H. Girault EPFL Valais Wallis, École Polytechnique Fédérale de Lausanne, Laboratoire d'Electrochimie Physique et Analytique, Rue de l'Industrie 17, Case Postale 440, CH-1951 Sion, SwitzerlandSearch for more papers by this author Danick Reynard, Danick Reynard EPFL Valais Wallis, École Polytechnique Fédérale de Lausanne, Laboratoire d'Electrochimie Physique et Analytique, Rue de l'Industrie 17, Case Postale 440, CH-1951 Sion, SwitzerlandSearch for more papers by this authorMahdi Moghaddam, Mahdi Moghaddam University of Turku, Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, 20014 Turku, FinlandSearch for more papers by this authorCedrik Wiberg, Cedrik Wiberg University of Turku, Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, 20014 Turku, FinlandSearch for more papers by this authorSilver Sepp, Silver Sepp University of Turku, Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, 20014 Turku, FinlandSearch for more papers by this authorPekka Peljo, Pekka Peljo University of Turku, Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, 20014 Turku, FinlandSearch for more papers by this authorHubert H. Girault, Hubert H. Girault EPFL Valais Wallis, École Polytechnique Fédérale de Lausanne, Laboratoire d'Electrochimie Physique et Analytique, Rue de l'Industrie 17, Case Postale 440, CH-1951 Sion, SwitzerlandSearch for more papers by this author Book Editor(s):Christina Roth, Christina RothSearch for more papers by this authorJens Noack, Jens NoackSearch for more papers by this authorMaria Skyllas-Kazacos, Maria Skyllas-KazacosSearch for more papers by this author First published: 06 January 2023 https://doi.org/10.1002/9783527832767.ch5 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Summary In 2006, the concept of redox targeting was introduced in which solubilized redox-active molecules are used to mediate reversible electron transfer reactions. The aim was to address conductivity concerns rising from insulating lithium-insertion material (e.g. LiFePO 4 particles) by using freely diffusing molecules as relays between the current collector and the solid electroactive material. The solubilized molecules were selected such that the standard potential window matches the Fermi level of the solid material to allow spontaneous and reversible charge transfer at the solid–liquid interface. In 2013, the concept was further developed to enhance the energy density of a flow battery. The redox-mediated flow battery includes both solid redox materials (redox booster stored in the tank) and solubilized redox species (redox mediators) to store and carry the charge of the battery, respectively. The mediators are reversibly oxidized or reduced inside the flow cell and transported into the charge storage tanks, where they will drive mediated-electron transfer reactions to charge and discharge the redox boosters. High-energy density solid redox materials can be used to boost the relatively low energy density of a conventional flow battery. In this chapter, we will first discuss the fundamental theory behind redox-mediated processes. Then, we will provide a complete and detailed literature review on reported systems emerging from this concept in the field of redox-flow battery going from redox solid booster to dual-circuit flow battery. References Dennison , C.R. , Vrubel , H. , Amstutz , V. et al. ( 2015 ). Redox flow batteries, hydrogen and distributed storage . Chimia (Aarau) 69 ( 12 ): 753 – 758 . https://doi.org/10.2533/chimia.2015.753 . Amstutz , V. , Toghill , K.E. , Powlesland , F. et al. ( 2014 ). Renewable hydrogen generation from a dual-circuit redox flow battery . Energy & Environmental Science 7 ( 7 ): 2350 – 2358 . https://doi.org/10.1039/C4EE00098F . Reynard , D. , Bolik-Coulon , G. , Maye , S. , and Girault , H.H. ( 2020 ). Hydrogen production on demand by redox-mediated electrocatalysis: a kinetic study . Chemical Engineering Journal 126721 . https://doi.org/10.1016/j.cej.2020.126721 . Peljo , P. , Vrubel , H. , Amstutz , V. et al. ( 2016 ). All-vanadium dual circuit redox flow battery for renewable hydrogen generation and desulfurisation . Green Chemistry 18 ( 6 ): 1785 – 1797 . https://doi.org/10.1039/C5GC02196K . Peljo , P. , Scanlon , M.D. , Olaya , A.J. et al. ( 2017 ). Redox electrocatalysis of floating nanoparticles: determining electrocatalytic properties without the influence of solid supports . Journal of Physical Chemistry Letters 8 ( 15 ): 3564 – 3575 . https://doi.org/10.1021/acs.jpclett.7b00685 . Ligen , Y. ( 2020 ) Electrochemical systems for hydrogen fuel cell and battery electric vehicle infrastructure https://infoscience.epfl.ch/record/282095 (accessed 25 June 2021). https://doi.org/10.5075/epfl-thesis-7916 . Ligen , Y. , Vrubel , H. , and Girault , H. ( 2019 ). Local energy storage and stochastic modeling for ultrafast charging stations . Energies 12 ( 10 ): 1986 . https://doi.org/10.3390/en12101986 . Amstutz , V. , Toghill , K. E. , Comninellis , C. , and Girault , H. H. ( 2017 ). Redox flow battery for hydrogen generation . US9543609B2, January 10, 2017. Reynard , D. , Maye , S. , Peljo , P. et al. ( 2020 ). Vanadium–manganese redox flow battery: study of MnIII disproportionation in the presence of other metallic ions . Chemistry – A European Journal 26 ( 32 ): 7250 – 7257 . https://doi.org/10.1002/chem.202000340 . Reynard , D. and Girault , H. ( 2021 ). Combined hydrogen production and electricity storage using a vanadium-manganese redox dual-flow battery . Cell Reports Physical Science 100556 . https://doi.org/10.1016/j.xcrp.2021.100556 . Piwek , J. , Dennison , C.R. , Frackowiak , E. et al. ( 2019 ). Vanadium-oxygen cell for positive electrolyte discharge in dual-circuit vanadium redox flow battery . Journal of Power Sources 439 : 227075 . https://doi.org/10.1016/j.jpowsour.2019.227075 . Sánchez-Díez , E. , Ventosa , E. , Guarnieri , M. et al. ( 2021 ). Redox flow batteries: status and perspective towards sustainable stationary energy storage . Journal of Power Sources 481 : 228804 . https://doi.org/10.1016/j.jpowsour.2020.228804 . Doetsch , C. and Pohlig , A. ( 2020 ). The use of flow batteries in storing electricity for national grids , Chpater 13. In: Future Energy , 3 e (ed. T.M. Letcher ), 263 – 277 . Elsevier https://doi.org/10.1016/B978-0-08-102886-5.00013-X . Vesborg , P.C.K. and Jaramillo , T.F. ( 2012 ). Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy . RSC Advances 2 ( 21 ): 7933 – 7947 . https://doi.org/10.1039/C2RA20839C . Qi , Z. and Koenig , G.M. ( 2017 ). Review article: flow battery systems with solid electroactive materials . Journal of Vacuum Science & Technology B 35 ( 4 ): 040801 . https://doi.org/10.1116/1.4983210 . Heller , A. and Feldman , B. ( 2008 ). Electrochemical glucose sensors and their applications in diabetes management . Chemical Reviews 108 ( 7 ): 2482 – 2505 . https://doi.org/10.1021/cr068069y . Yan , R. and Wang , Q. ( 2018 ). Redox-targeting-based flow batteries for large-scale energy storage . Advanced Materials 30 ( 47 ): 1 – 13 . https://doi.org/10.1002/adma.201802406 . Chen , Y. , Zhou , M. , Xia , Y. et al. ( 2019 ). A stable and high-capacity redox targeting-based electrolyte for aqueous flow batteries . Joule 3 ( 9 ): 2255 – 2267 . https://doi.org/10.1016/j.joule.2019.06.007 . Gentil , S. , Reynard , D. , and Girault , H.H. ( 2020 ). Aqueous organic and redox-mediated redox flow batteries: a review . Current Opinion in Electrochemistry 21 : 7 – 13 . https://doi.org/10.1016/j.coelec.2019.12.006 . Moghaddam , M. , Sepp , S. , Wiberg , C. et al. ( 2021 ). Thermodynamics, charge transfer and practical considerations of solid boosters in redox flow batteries . Molecules 26 ( 8 ): 2111 . https://doi.org/10.3390/molecules26082111 . Zhou , M. , Huang , Q. , Pham Truong , T.N. et al. ( 2017 ). Nernstian-potential-driven redox-targeting reactions of battery materials . Chem 3 ( 6 ): 1036 – 1049 . https://doi.org/10.1016/j.chempr.2017.10.003 . Wang , Q. , Zakeeruddin , S.M. , Wang , D. et al. ( 2006 ). Redox targeting of insulating electrode materials: a new approach to high-energy-density batteries . Angewandte Chemie, International Edition 45 ( 48 ): 8197 – 8200 . https://doi.org/10.1002/anie.200602891 . Huang , Q. , Li , H. , Grätzel , M. , and Wang , Q. ( 2013 ). Reversible chemical delithiation/lithiation of LiFePO 4 : towards a redox flow lithium-ion battery . Physical Chemistry Chemical Physics 15 ( 6 ): 1793 – 1797 . https://doi.org/10.1039/c2cp44466f . Pan , F. , Yang , J. , Huang , Q. et al. ( 2014 ). Redox targeting of anatase TiO 2 for redox flow lithium-ion batteries . Advanced Energy Materials 4 ( 15 ): 1400567 . https://doi.org/10.1002/aenm.201400567 . Huang , Q. , Yang , J. , Ng , C.B. et al. ( 2016 ). A redox flow lithium battery based on the redox targeting reactions between LiFePO 4 and iodide . Energy & Environmental Science 9 ( 3 ): 917 – 921 . https://doi.org/10.1039/C5EE03764F . Zanzola , E. , Dennison , C.R. , Battistel , A. et al. ( 2017 ). Redox solid energy boosters for flow batteries: polyani line as a case study . Electrochimica Acta 235 : 664 – 671 . https://doi.org/10.1016/j.electacta.2017.03.084 . Zanzola , E. , Gentil , S. , Gschwend , G. et al. ( 2019 ). Solid electrochemical energy storage for aqueous redox flow batteries: the case of copper hexacyanoferrate . Electrochimica Acta 321 : https://doi.org/10.1016/j.electacta.2019.134704 . Páez , T. , Martínez-Cuezva , A. , Palma , J. , and Ventosa , E. ( 2019 ). Mediated alkaline flow batteries: from fundamentals to application . ACS Applied Energy Materials 2 ( 11 ): 8328 – 8336 . https://doi.org/10.1021/acsaem.9b01826 . Zhou , M. , Chen , Y. , Salla , M. et al. ( 2020 ). Single-molecule redox-targeting reactions for a PH-neutral aqueous organic redox flow battery . Angewandte Chemie International Edition 59 ( 34 ): 14286 – 14291 . https://doi.org/10.1002/anie.202004603 . Wang , X. , Zhou , M. , Zhang , F. et al. ( 2021 ). Redox targeting of energy materials . Current Opinion in Electrochemistry 29 : 100743 . https://doi.org/10.1016/j.coelec.2021.100743 . Vivo-Vilches , J.F. , Nadeina , A. , Rahbani , N. et al. ( 2021 ). LiFePO 4 -Ferri/ferrocyanide redox targeting aqueous posolyte: set-up, efficiency and kinetics . Journal of Power Sources 488 ( December 2020 ): 229387 . https://doi.org/10.1016/j.jpowsour.2020.229387 . Karthikeyan , D.K. , Sikha , G. , and White , R.E. ( 2008 ). Thermodynamic model development for lithium intercalation electrodes . Journal of Power Sources 185 ( 2 ): 1398 – 1407 . https://doi.org/10.1016/j.jpowsour.2008.07.077 . Zanzola , E. , Gentil , S. , Gschwend , G. et al. ( 2019 ). Solid electrochemical energy storage for aqueous redox flow batteries: the case of copper hexacyanoferrate . Electrochimica Acta 321 : 134704 . https://doi.org/10.1016/j.electacta.2019.134704 . Wessells , C.D. , Huggins , R.A. , and Cui , Y. ( 2011 ). Copper hexacyanoferrate battery electrodes with long cycle life and high power . Nature Communications 2 ( 1 ): 2 – 6 . https://doi.org/10.1038/ncomms1563 . Bryans , D. , Amstutz , V. , Girault , H.H. , and Berlouis , L.E.A. ( 2018 ). Characterisation of a 200 Kw/400 Kwh vanadium redox flow battery . Batteries 4 ( 4 ): https://doi.org/10.3390/batteries4040054 . Kuss , C. , Carmant-Dérival , M. , Trinh , N.D. et al. ( 2014 ). Kinetics of heterosite iron phosphate lithiation by chemical reduction . Journal of Physical Chemistry C 118 ( 34 ): 19524 – 19528 . https://doi.org/10.1021/jp502346f . Gupta , D. and Koenig , G.M. ( 2020 ). Analysis of chemical and electrochemical lithiation/delithiation of a lithium-ion cathode material . Journal of the Electrochemical Society 167 ( 2 ): 020537 . https://doi.org/10.1149/1945-7111/ab6bbf . Jennings , J.R. , Huang , Q. , and Wang , Q. ( 2015 ). Kinetics of LixFePO 4 lithiation/delithiation by ferrocene-based redox mediators: an electrochemical approach . Journal of Physical Chemistry C 119 ( 31 ): 17522 – 17528 . https://doi.org/10.1021/acs.jpcc.5b03561 . Yan , R. , Ghilane , J. , Phuah , K.C. et al. ( 2018 ). Determining Li+-coupled redox targeting reaction kinetics of battery materials with scanning electrochemical microscopy . Journal of Physical Chemistr y Letters 9 ( 3 ): 491 – 496 . https://doi.org/10.1021/acs.jpclett.7b03136 . Jin , S. , Fell , E.M. , Vina-Lopez , L. et al. ( 2020 ). Near neutral pH redox flow battery with low permeability and long-lifetime phosphonated viologen active species . Adv. Energy Mater. 10 , 2000100 . https://onlinelibrary.wiley.com/doi/10.1002/aenm.202000100 . Flow Batteries: From Fundamentals to Applications, Volume 2 ReferencesRelatedInformation