Generation-Based Joint Luminance-Chrominance Learning for Underwater Image Quality Assessment

色度 人工智能 亮度 计算机视觉 失真(音乐) 计算机科学 水下 图像质量 特征(语言学) 模式识别(心理学) 数学 图像(数学) 电信 放大器 语言学 哲学 带宽(计算) 海洋学 地质学
作者
Zheyin Wang,Liquan Shen,Zhengyong Wang,Yufei Lin,Yanliang Jin
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (3): 1123-1139 被引量:20
标识
DOI:10.1109/tcsvt.2022.3212788
摘要

Underwater enhanced images (UEIs) are affected by not only the color cast and haze effect due to light attenuation and scattering, but also the over-enhancement and texture distortion caused by enhancement algorithms. However, existing underwater image quality assessment (UIQA) methods mainly focus on the inherent distortion caused by underwater optical imaging, and ignore the widespread artificial distortion, which leads to poor performance in evaluating UEIs. In this paper, a novel mapping-based underwater image quality representation is proposed. We divide underwater enhanced images into different domains and utilize a feature vector to measure the distance from the raw image domain to each enhanced image domain. The length and direction of the vector are defined as the enhancement degree and enhancement direction of the image. We construct a best enhancement direction and map other vectors to this direction to obtain the corresponding quality representation. Based on this, a novel network, called generation-based joint luminance-chrominance underwater image quality evaluation (GLCQE), is proposed, which is mainly divided into three parts: bi-directional reference generation module (BRGM), chromatic distortion evaluation network (CDEN), and sharpness distortion evaluation network (SDEN). BRGM is designed to generate two reference images about the unenhanced and the optimal enhanced versions of input UEI. In addition, the distortions in the luminance and chrominance domains of the UEI are analyzed. The luminance and chrominance channels of images are separated and input to SDEN and CDEN respectively to detect different distortions. A multi-scale feature mapping module is proposed in CDEN and SDEN to extract the feature representation of quality in chrominance and luminance of these images respectively. Moreover, a parallel spatial attention module is designed to focus on distortions in structural space by utilizing the different receptive fields of the convolution layer, due to the diverse manifestations of structural loss in the image. Finally, the mapped features extracted by two collaborative networks help the model evaluate the quality of underwater images more accurately. Extensive experiments demonstrate the superiority of our model against other representative state-of-the-art models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yearluren完成签到,获得积分10
刚刚
研友_LBoEqn发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
3秒前
清爽朋友发布了新的文献求助10
3秒前
gg发布了新的文献求助10
3秒前
3秒前
凤迎雪飘完成签到,获得积分10
3秒前
ZQH完成签到,获得积分10
3秒前
清明居士完成签到,获得积分10
4秒前
求助人员发布了新的文献求助10
4秒前
5秒前
小蘑菇应助禹宛白采纳,获得10
5秒前
ff完成签到,获得积分10
5秒前
舒适的蜜蜂完成签到,获得积分10
5秒前
英姑应助WNL采纳,获得10
5秒前
果果发布了新的文献求助10
6秒前
赵郑坤完成签到,获得积分10
6秒前
雷雷发布了新的文献求助10
6秒前
6秒前
科研通AI6应助wen采纳,获得30
6秒前
致意完成签到 ,获得积分10
7秒前
张雪芹发布了新的文献求助10
7秒前
刘富宇完成签到 ,获得积分10
7秒前
necos完成签到,获得积分10
7秒前
8秒前
8秒前
都安发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
陆路露禄完成签到,获得积分10
10秒前
一蹦一跳的向日葵完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802