Generation-Based Joint Luminance-Chrominance Learning for Underwater Image Quality Assessment

色度 人工智能 亮度 计算机视觉 失真(音乐) 计算机科学 水下 图像质量 特征(语言学) 模式识别(心理学) 数学 图像(数学) 电信 地质学 哲学 海洋学 放大器 带宽(计算) 语言学
作者
Zheyin Wang,Liquan Shen,Zhengyong Wang,Yufei Lin,Yanliang Jin
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (3): 1123-1139 被引量:20
标识
DOI:10.1109/tcsvt.2022.3212788
摘要

Underwater enhanced images (UEIs) are affected by not only the color cast and haze effect due to light attenuation and scattering, but also the over-enhancement and texture distortion caused by enhancement algorithms. However, existing underwater image quality assessment (UIQA) methods mainly focus on the inherent distortion caused by underwater optical imaging, and ignore the widespread artificial distortion, which leads to poor performance in evaluating UEIs. In this paper, a novel mapping-based underwater image quality representation is proposed. We divide underwater enhanced images into different domains and utilize a feature vector to measure the distance from the raw image domain to each enhanced image domain. The length and direction of the vector are defined as the enhancement degree and enhancement direction of the image. We construct a best enhancement direction and map other vectors to this direction to obtain the corresponding quality representation. Based on this, a novel network, called generation-based joint luminance-chrominance underwater image quality evaluation (GLCQE), is proposed, which is mainly divided into three parts: bi-directional reference generation module (BRGM), chromatic distortion evaluation network (CDEN), and sharpness distortion evaluation network (SDEN). BRGM is designed to generate two reference images about the unenhanced and the optimal enhanced versions of input UEI. In addition, the distortions in the luminance and chrominance domains of the UEI are analyzed. The luminance and chrominance channels of images are separated and input to SDEN and CDEN respectively to detect different distortions. A multi-scale feature mapping module is proposed in CDEN and SDEN to extract the feature representation of quality in chrominance and luminance of these images respectively. Moreover, a parallel spatial attention module is designed to focus on distortions in structural space by utilizing the different receptive fields of the convolution layer, due to the diverse manifestations of structural loss in the image. Finally, the mapped features extracted by two collaborative networks help the model evaluate the quality of underwater images more accurately. Extensive experiments demonstrate the superiority of our model against other representative state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HZW发布了新的文献求助20
1秒前
不厌关注了科研通微信公众号
1秒前
labxgr完成签到,获得积分10
1秒前
1秒前
1秒前
吱嗷赵完成签到,获得积分20
1秒前
MADKAI发布了新的文献求助20
2秒前
木木完成签到,获得积分10
2秒前
2秒前
Jenny应助强健的月饼采纳,获得10
3秒前
记号完成签到,获得积分10
3秒前
玛卡巴卡完成签到,获得积分10
3秒前
KissesU完成签到 ,获得积分10
4秒前
大厨懒洋洋完成签到,获得积分10
4秒前
4秒前
咕噜仔发布了新的文献求助10
5秒前
Nelson_Foo完成签到,获得积分10
5秒前
Ll发布了新的文献求助10
5秒前
@_@完成签到,获得积分10
6秒前
hhh发布了新的文献求助10
6秒前
su完成签到,获得积分20
6秒前
GAO完成签到,获得积分10
6秒前
单纯乞完成签到,获得积分10
6秒前
守夜人发布了新的文献求助10
7秒前
liuchao发布了新的文献求助10
7秒前
逃之姚姚完成签到 ,获得积分10
7秒前
hy完成签到 ,获得积分20
8秒前
xhy发布了新的文献求助10
8秒前
新一完成签到,获得积分20
8秒前
碧阳的尔风完成签到,获得积分10
8秒前
桐桐应助ting采纳,获得10
8秒前
传奇3应助jagger采纳,获得30
9秒前
chen发布了新的文献求助10
9秒前
andyxrz完成签到,获得积分20
9秒前
清爽冬莲完成签到 ,获得积分10
9秒前
CodeCraft应助柠檬采纳,获得10
11秒前
库里晚安完成签到,获得积分10
11秒前
A1len完成签到 ,获得积分10
12秒前
星辰大海应助sokach采纳,获得10
13秒前
新一发布了新的文献求助30
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672