Generation-Based Joint Luminance-Chrominance Learning for Underwater Image Quality Assessment

色度 人工智能 亮度 计算机视觉 失真(音乐) 计算机科学 水下 图像质量 特征(语言学) 模式识别(心理学) 数学 图像(数学) 电信 地质学 哲学 海洋学 放大器 带宽(计算) 语言学
作者
Zheyin Wang,Liquan Shen,Zhengyong Wang,Yufei Lin,Yanliang Jin
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (3): 1123-1139 被引量:20
标识
DOI:10.1109/tcsvt.2022.3212788
摘要

Underwater enhanced images (UEIs) are affected by not only the color cast and haze effect due to light attenuation and scattering, but also the over-enhancement and texture distortion caused by enhancement algorithms. However, existing underwater image quality assessment (UIQA) methods mainly focus on the inherent distortion caused by underwater optical imaging, and ignore the widespread artificial distortion, which leads to poor performance in evaluating UEIs. In this paper, a novel mapping-based underwater image quality representation is proposed. We divide underwater enhanced images into different domains and utilize a feature vector to measure the distance from the raw image domain to each enhanced image domain. The length and direction of the vector are defined as the enhancement degree and enhancement direction of the image. We construct a best enhancement direction and map other vectors to this direction to obtain the corresponding quality representation. Based on this, a novel network, called generation-based joint luminance-chrominance underwater image quality evaluation (GLCQE), is proposed, which is mainly divided into three parts: bi-directional reference generation module (BRGM), chromatic distortion evaluation network (CDEN), and sharpness distortion evaluation network (SDEN). BRGM is designed to generate two reference images about the unenhanced and the optimal enhanced versions of input UEI. In addition, the distortions in the luminance and chrominance domains of the UEI are analyzed. The luminance and chrominance channels of images are separated and input to SDEN and CDEN respectively to detect different distortions. A multi-scale feature mapping module is proposed in CDEN and SDEN to extract the feature representation of quality in chrominance and luminance of these images respectively. Moreover, a parallel spatial attention module is designed to focus on distortions in structural space by utilizing the different receptive fields of the convolution layer, due to the diverse manifestations of structural loss in the image. Finally, the mapped features extracted by two collaborative networks help the model evaluate the quality of underwater images more accurately. Extensive experiments demonstrate the superiority of our model against other representative state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常竹发布了新的文献求助10
1秒前
angelsknight发布了新的文献求助10
3秒前
宜醉宜游宜睡应助tsttst采纳,获得10
3秒前
王子语完成签到,获得积分10
4秒前
春申君完成签到 ,获得积分10
5秒前
6秒前
烟花应助尾生即是尾声采纳,获得10
6秒前
科研通AI2S应助ta采纳,获得10
6秒前
科研通AI2S应助ta采纳,获得10
6秒前
9秒前
Solomon完成签到 ,获得积分0
9秒前
10秒前
CLK发布了新的文献求助10
10秒前
开心语蝶应助连安阳采纳,获得10
11秒前
12秒前
12秒前
毕葛发布了新的文献求助10
13秒前
ardejiang发布了新的文献求助10
16秒前
尾生即是尾声完成签到,获得积分10
16秒前
17秒前
17秒前
foreverer发布了新的文献求助10
17秒前
19秒前
chunyan_sysu发布了新的文献求助10
20秒前
王伟发布了新的文献求助10
23秒前
23秒前
承宇发布了新的文献求助10
24秒前
25秒前
spring完成签到 ,获得积分10
25秒前
26秒前
angelsknight完成签到,获得积分10
27秒前
29秒前
30秒前
柠檬发布了新的文献求助10
30秒前
30秒前
彭于晏应助怕孤独的访梦采纳,获得10
30秒前
CipherSage应助平常竹采纳,获得10
30秒前
由由发布了新的文献求助10
31秒前
Anonymous发布了新的文献求助10
31秒前
bibi发布了新的文献求助30
33秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234215
求助须知:如何正确求助?哪些是违规求助? 2880628
关于积分的说明 8216267
捐赠科研通 2548212
什么是DOI,文献DOI怎么找? 1377613
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302