分光计
无线电频率
光学
探测器
物理
波长
信号(编程语言)
计算机科学
电信
程序设计语言
作者
Xiaojing Ren,Chao-Mao Hsieh,Mohammad O. A. Malik,Joshua Su Weiming,Quan Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement
[Institute of Electrical and Electronics Engineers]
日期:2022-12-09
卷期号:72: 1-8
标识
DOI:10.1109/tim.2022.3227992
摘要
Optical spectrometers capable of fast spectral measurements are useful in many fields spanning from industrial manufacturing to scientific research. However, conventional spectrometers, especially those applicable to continuous-wave light measurements, are limited in speed due to the need of taking multiple measurements sequentially and/or direct current (dc) detection that are subject to noise influence. We report a new radio frequency (RF) tagging spectrometer, which breaks these limitations and dramatically accelerates measurements. In this new spectrometer, an acousto-optic deflector (AOD) is used to encode the intensity at each wavelength to the amplitude of a different beat RF signal. As a result, all RF signals can be summed up and detected simultaneously by a fast single-channel detector. The spectrum is obtained by taking the Fourier transform of the summed RF signal. The spectrometer is evaluated by measuring both multiline and broadband light sources with a speed up to 1 MHz as well as light scattering spectra with a speed of 64 kHz. With the ability to select wavelengths by programming the driving RF signal, the spectrometer offers great flexibility to detect part of a spectrum that contains most useful information with an unprecedented speed limit up to multiple megahertz.
科研通智能强力驱动
Strongly Powered by AbleSci AI