已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

InBi: A Ferroelastic Monolayer with Strain Tunable Spin–Orbit Dirac Points and Carrier Self-Doping Effect

凝聚态物理 单层 应变工程 迪拉克费米子 费米能量 石墨烯 材料科学 布里渊区 Dirac(视频压缩格式) 兴奋剂 物理 纳米技术 电子 量子力学 相变 中微子
作者
Xinkai Ding,Yongheng Ge,Yinglu Jia,Gaoyang Gou,Ziming Zhu,Xiao Cheng Zeng
出处
期刊:ACS Nano [American Chemical Society]
卷期号:16 (12): 21546-21554 被引量:11
标识
DOI:10.1021/acsnano.2c10387
摘要

Semimetallic two-dimensional (2D) Dirac materials beyond graphene, especially 2D materials with robust Dirac points against the spin-orbit coupling (SOC), are still highly sought. Herein, we theoretically demonstrate the InBi monolayer as a long-sought 2D Dirac material whose exotic Dirac Fermionic states cannot be gapped out by SOC. The InBi monolayer with the litharge crystal structure possesses not only 4-fold band degeneracy, linear energy dispersion, and ultrahigh Fermi velocity in the order of 105 m/s, but also spontaneous ferroelasticity that can lead to the orthorhombic lattice deformation and semimetallic electronic structure. Specifically, the symmetry protected spin-orbit Dirac points in 2D InBi are located at the Brillouin Zone (BZ) boundary and near the Fermi level in energy. More importantly, with coexisting spin-orbit Dirac points and spontaneous ferroelasticity, the InBi monolayer exhibits an additional advantage for engineering Dirac Fermionic states by ferroelastic (FE) strain. Energy levels of Dirac points are strongly coupled to FE strain, and the semimetallic electronic structure of the InBi monolayer is also susceptible to the FE strain induced carrier self-doping effect. Depending on the strain orientation within the InBi monolayer, electron and hole Fermi pockets will develop along the two planar directions, leading to the characteristic transport coefficients (as evidenced by our transport simulations based on Boltzmann formalism) for future experimental detection. FE strain tunable Dirac Fermionic states together with the carrier self-doping effect will benefit future development of ultrathin electronic devices with both high carrier mobility and controllable charge conductivities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐唐完成签到 ,获得积分10
3秒前
科目三应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
浅尝离白应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
7秒前
小超人完成签到 ,获得积分10
8秒前
12秒前
垃圾桶完成签到 ,获得积分10
13秒前
nnnd77发布了新的文献求助10
14秒前
feimengxia完成签到 ,获得积分10
15秒前
小赵完成签到 ,获得积分10
25秒前
30秒前
wanci应助123采纳,获得10
34秒前
今后应助njq采纳,获得10
35秒前
35秒前
可爱的函函应助nnnd77采纳,获得10
37秒前
翠甜翠甜大西瓜完成签到 ,获得积分10
42秒前
不吃苹果和香蕉完成签到,获得积分10
44秒前
44秒前
Rn完成签到 ,获得积分10
46秒前
nnnd77完成签到,获得积分10
48秒前
49秒前
50秒前
Hello应助mochi采纳,获得30
51秒前
123发布了新的文献求助10
54秒前
56秒前
土豆你个西红柿完成签到 ,获得积分10
1分钟前
ding应助zhangqi采纳,获得10
1分钟前
1分钟前
1分钟前
雷博完成签到,获得积分10
1分钟前
佛fire发布了新的文献求助10
1分钟前
雷博发布了新的文献求助10
1分钟前
xiao完成签到 ,获得积分10
1分钟前
1分钟前
mochi发布了新的文献求助30
1分钟前
白桦林完成签到 ,获得积分20
1分钟前
yaolei完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146673
求助须知:如何正确求助?哪些是违规求助? 2797981
关于积分的说明 7826310
捐赠科研通 2454478
什么是DOI,文献DOI怎么找? 1306289
科研通“疑难数据库(出版商)”最低求助积分说明 627692
版权声明 601522