InBi: A Ferroelastic Monolayer with Strain Tunable Spin–Orbit Dirac Points and Carrier Self-Doping Effect

凝聚态物理 单层 应变工程 迪拉克费米子 费米能量 石墨烯 材料科学 布里渊区 Dirac(视频压缩格式) 兴奋剂 物理 纳米技术 电子 量子力学 相变 中微子
作者
Xinkai Ding,Yongheng Ge,Yinglu Jia,Gaoyang Gou,Ziming Zhu,Xiao Cheng Zeng
出处
期刊:ACS Nano [American Chemical Society]
卷期号:16 (12): 21546-21554 被引量:13
标识
DOI:10.1021/acsnano.2c10387
摘要

Semimetallic two-dimensional (2D) Dirac materials beyond graphene, especially 2D materials with robust Dirac points against the spin-orbit coupling (SOC), are still highly sought. Herein, we theoretically demonstrate the InBi monolayer as a long-sought 2D Dirac material whose exotic Dirac Fermionic states cannot be gapped out by SOC. The InBi monolayer with the litharge crystal structure possesses not only 4-fold band degeneracy, linear energy dispersion, and ultrahigh Fermi velocity in the order of 105 m/s, but also spontaneous ferroelasticity that can lead to the orthorhombic lattice deformation and semimetallic electronic structure. Specifically, the symmetry protected spin-orbit Dirac points in 2D InBi are located at the Brillouin Zone (BZ) boundary and near the Fermi level in energy. More importantly, with coexisting spin-orbit Dirac points and spontaneous ferroelasticity, the InBi monolayer exhibits an additional advantage for engineering Dirac Fermionic states by ferroelastic (FE) strain. Energy levels of Dirac points are strongly coupled to FE strain, and the semimetallic electronic structure of the InBi monolayer is also susceptible to the FE strain induced carrier self-doping effect. Depending on the strain orientation within the InBi monolayer, electron and hole Fermi pockets will develop along the two planar directions, leading to the characteristic transport coefficients (as evidenced by our transport simulations based on Boltzmann formalism) for future experimental detection. FE strain tunable Dirac Fermionic states together with the carrier self-doping effect will benefit future development of ultrathin electronic devices with both high carrier mobility and controllable charge conductivities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中冷风发布了新的文献求助10
1秒前
香蕉觅云应助LQ采纳,获得50
1秒前
2秒前
2秒前
3秒前
llynvxia发布了新的文献求助30
4秒前
赘婿应助宇文听南采纳,获得10
4秒前
5秒前
5秒前
卡酷一完成签到 ,获得积分10
5秒前
传奇3应助亓大大采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
CodeCraft应助ZHAOyifan采纳,获得10
8秒前
9秒前
9秒前
9秒前
kiki完成签到 ,获得积分10
9秒前
whykm91发布了新的文献求助10
10秒前
10秒前
成就的幻竹完成签到,获得积分10
10秒前
Jia发布了新的文献求助10
11秒前
游泳的虾饺完成签到,获得积分10
11秒前
科目三应助可靠的寒风采纳,获得10
11秒前
可爱的函函应助芝士采纳,获得10
12秒前
CipherSage应助芝士采纳,获得10
12秒前
orixero应助芝士采纳,获得10
12秒前
领导范儿应助芝士采纳,获得10
12秒前
ding应助芝士采纳,获得10
12秒前
小蘑菇应助芝士采纳,获得10
12秒前
李爱国应助芝士采纳,获得10
12秒前
Yang2完成签到,获得积分10
13秒前
13秒前
13秒前
Akim应助失眠毛衣采纳,获得10
13秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743528
求助须知:如何正确求助?哪些是违规求助? 5414569
关于积分的说明 15347814
捐赠科研通 4884209
什么是DOI,文献DOI怎么找? 2625665
邀请新用户注册赠送积分活动 1574515
关于科研通互助平台的介绍 1531418