InBi: A Ferroelastic Monolayer with Strain Tunable Spin–Orbit Dirac Points and Carrier Self-Doping Effect

凝聚态物理 单层 应变工程 迪拉克费米子 费米能量 石墨烯 材料科学 布里渊区 Dirac(视频压缩格式) 兴奋剂 物理 纳米技术 电子 量子力学 相变 中微子
作者
Xinkai Ding,Yongheng Ge,Yinglu Jia,Gaoyang Gou,Ziming Zhu,Xiao Cheng Zeng
出处
期刊:ACS Nano [American Chemical Society]
卷期号:16 (12): 21546-21554 被引量:11
标识
DOI:10.1021/acsnano.2c10387
摘要

Semimetallic two-dimensional (2D) Dirac materials beyond graphene, especially 2D materials with robust Dirac points against the spin-orbit coupling (SOC), are still highly sought. Herein, we theoretically demonstrate the InBi monolayer as a long-sought 2D Dirac material whose exotic Dirac Fermionic states cannot be gapped out by SOC. The InBi monolayer with the litharge crystal structure possesses not only 4-fold band degeneracy, linear energy dispersion, and ultrahigh Fermi velocity in the order of 105 m/s, but also spontaneous ferroelasticity that can lead to the orthorhombic lattice deformation and semimetallic electronic structure. Specifically, the symmetry protected spin-orbit Dirac points in 2D InBi are located at the Brillouin Zone (BZ) boundary and near the Fermi level in energy. More importantly, with coexisting spin-orbit Dirac points and spontaneous ferroelasticity, the InBi monolayer exhibits an additional advantage for engineering Dirac Fermionic states by ferroelastic (FE) strain. Energy levels of Dirac points are strongly coupled to FE strain, and the semimetallic electronic structure of the InBi monolayer is also susceptible to the FE strain induced carrier self-doping effect. Depending on the strain orientation within the InBi monolayer, electron and hole Fermi pockets will develop along the two planar directions, leading to the characteristic transport coefficients (as evidenced by our transport simulations based on Boltzmann formalism) for future experimental detection. FE strain tunable Dirac Fermionic states together with the carrier self-doping effect will benefit future development of ultrathin electronic devices with both high carrier mobility and controllable charge conductivities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
科研通AI2S应助Zhong采纳,获得10
1秒前
yidashi完成签到,获得积分10
1秒前
Kelvin.Tsi完成签到 ,获得积分10
1秒前
Island发布了新的文献求助10
2秒前
hu970发布了新的文献求助10
2秒前
九九发布了新的文献求助10
2秒前
123456完成签到,获得积分10
2秒前
BareBear应助龙妍琳采纳,获得10
2秒前
赘婿应助wary采纳,获得10
3秒前
小蘑菇应助wary采纳,获得10
3秒前
上官若男应助wary采纳,获得10
3秒前
李爱国应助木子采纳,获得10
3秒前
烟花应助马佳凯采纳,获得10
3秒前
3秒前
LYL完成签到,获得积分10
4秒前
4秒前
得意凡人完成签到,获得积分10
4秒前
4秒前
害怕的擎宇完成签到,获得积分10
5秒前
柳絮完成签到,获得积分20
5秒前
6秒前
赫连烙发布了新的文献求助10
6秒前
目遇给目遇的求助进行了留言
7秒前
Arnold发布了新的文献求助10
8秒前
在九月完成签到 ,获得积分10
8秒前
selfevidbet发布了新的文献求助30
8秒前
通~发布了新的文献求助10
8秒前
靓仔完成签到,获得积分10
8秒前
妙手回春板蓝根完成签到,获得积分10
8秒前
9秒前
11完成签到,获得积分10
10秒前
1111完成签到,获得积分10
10秒前
777完成签到,获得积分10
11秒前
junzilan发布了新的文献求助10
11秒前
11秒前
sun应助leave采纳,获得20
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762