InBi: A Ferroelastic Monolayer with Strain Tunable Spin–Orbit Dirac Points and Carrier Self-Doping Effect

凝聚态物理 单层 应变工程 迪拉克费米子 费米能量 石墨烯 材料科学 布里渊区 Dirac(视频压缩格式) 兴奋剂 物理 纳米技术 电子 量子力学 相变 中微子
作者
Xinkai Ding,Yongheng Ge,Yinglu Jia,Gaoyang Gou,Ziming Zhu,Xiao Cheng Zeng
出处
期刊:ACS Nano [American Chemical Society]
卷期号:16 (12): 21546-21554 被引量:13
标识
DOI:10.1021/acsnano.2c10387
摘要

Semimetallic two-dimensional (2D) Dirac materials beyond graphene, especially 2D materials with robust Dirac points against the spin-orbit coupling (SOC), are still highly sought. Herein, we theoretically demonstrate the InBi monolayer as a long-sought 2D Dirac material whose exotic Dirac Fermionic states cannot be gapped out by SOC. The InBi monolayer with the litharge crystal structure possesses not only 4-fold band degeneracy, linear energy dispersion, and ultrahigh Fermi velocity in the order of 105 m/s, but also spontaneous ferroelasticity that can lead to the orthorhombic lattice deformation and semimetallic electronic structure. Specifically, the symmetry protected spin-orbit Dirac points in 2D InBi are located at the Brillouin Zone (BZ) boundary and near the Fermi level in energy. More importantly, with coexisting spin-orbit Dirac points and spontaneous ferroelasticity, the InBi monolayer exhibits an additional advantage for engineering Dirac Fermionic states by ferroelastic (FE) strain. Energy levels of Dirac points are strongly coupled to FE strain, and the semimetallic electronic structure of the InBi monolayer is also susceptible to the FE strain induced carrier self-doping effect. Depending on the strain orientation within the InBi monolayer, electron and hole Fermi pockets will develop along the two planar directions, leading to the characteristic transport coefficients (as evidenced by our transport simulations based on Boltzmann formalism) for future experimental detection. FE strain tunable Dirac Fermionic states together with the carrier self-doping effect will benefit future development of ultrathin electronic devices with both high carrier mobility and controllable charge conductivities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助shadow采纳,获得10
1秒前
2秒前
畅快雁山完成签到,获得积分10
2秒前
科研通AI6应助科研懒狗采纳,获得10
2秒前
zcx完成签到,获得积分10
2秒前
jeopardy完成签到,获得积分10
2秒前
2秒前
邹帅发布了新的文献求助10
3秒前
失眠依珊发布了新的文献求助10
3秒前
wshwx完成签到,获得积分10
3秒前
HYLynn完成签到,获得积分10
3秒前
3秒前
3秒前
小豆完成签到,获得积分10
4秒前
淡淡友瑶完成签到,获得积分10
4秒前
Mmmmarys完成签到,获得积分10
4秒前
jubai应助聪慧的馒头mu采纳,获得10
5秒前
5秒前
jubai应助聪慧的馒头mu采纳,获得10
5秒前
大个应助飘逸数据线采纳,获得10
6秒前
科研完成签到,获得积分10
6秒前
哈哈完成签到,获得积分20
6秒前
6秒前
qfly123完成签到,获得积分10
6秒前
6秒前
wang完成签到,获得积分10
7秒前
7秒前
furin001完成签到,获得积分10
7秒前
2424完成签到,获得积分10
7秒前
7秒前
超人发布了新的文献求助10
7秒前
科研通AI6应助甾醇采纳,获得10
7秒前
茉行发布了新的文献求助10
8秒前
8秒前
Panchael完成签到,获得积分10
8秒前
8秒前
9秒前
内向以彤完成签到,获得积分10
9秒前
天天快乐应助拼搏的高高采纳,获得10
9秒前
orixero应助ilmiss采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645554
求助须知:如何正确求助?哪些是违规求助? 4769221
关于积分的说明 15030506
捐赠科研通 4804229
什么是DOI,文献DOI怎么找? 2568855
邀请新用户注册赠送积分活动 1526056
关于科研通互助平台的介绍 1485654