InBi: A Ferroelastic Monolayer with Strain Tunable Spin–Orbit Dirac Points and Carrier Self-Doping Effect

凝聚态物理 单层 应变工程 迪拉克费米子 费米能量 石墨烯 材料科学 布里渊区 Dirac(视频压缩格式) 兴奋剂 物理 纳米技术 电子 量子力学 相变 中微子
作者
Xinkai Ding,Yongheng Ge,Yinglu Jia,Gaoyang Gou,Ziming Zhu,Xiao Cheng Zeng
出处
期刊:ACS Nano [American Chemical Society]
卷期号:16 (12): 21546-21554 被引量:13
标识
DOI:10.1021/acsnano.2c10387
摘要

Semimetallic two-dimensional (2D) Dirac materials beyond graphene, especially 2D materials with robust Dirac points against the spin-orbit coupling (SOC), are still highly sought. Herein, we theoretically demonstrate the InBi monolayer as a long-sought 2D Dirac material whose exotic Dirac Fermionic states cannot be gapped out by SOC. The InBi monolayer with the litharge crystal structure possesses not only 4-fold band degeneracy, linear energy dispersion, and ultrahigh Fermi velocity in the order of 105 m/s, but also spontaneous ferroelasticity that can lead to the orthorhombic lattice deformation and semimetallic electronic structure. Specifically, the symmetry protected spin-orbit Dirac points in 2D InBi are located at the Brillouin Zone (BZ) boundary and near the Fermi level in energy. More importantly, with coexisting spin-orbit Dirac points and spontaneous ferroelasticity, the InBi monolayer exhibits an additional advantage for engineering Dirac Fermionic states by ferroelastic (FE) strain. Energy levels of Dirac points are strongly coupled to FE strain, and the semimetallic electronic structure of the InBi monolayer is also susceptible to the FE strain induced carrier self-doping effect. Depending on the strain orientation within the InBi monolayer, electron and hole Fermi pockets will develop along the two planar directions, leading to the characteristic transport coefficients (as evidenced by our transport simulations based on Boltzmann formalism) for future experimental detection. FE strain tunable Dirac Fermionic states together with the carrier self-doping effect will benefit future development of ultrathin electronic devices with both high carrier mobility and controllable charge conductivities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
怀先生完成签到,获得积分10
刚刚
shiyin完成签到 ,获得积分10
1秒前
zzz发布了新的文献求助10
1秒前
乐哉发布了新的文献求助10
1秒前
含蓄含烟完成签到,获得积分10
1秒前
2秒前
瘦瘦的草丛完成签到,获得积分10
2秒前
谨慎的白秋完成签到,获得积分10
2秒前
橘子林完成签到,获得积分10
2秒前
Donaldwang完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
liuaoo完成签到,获得积分20
2秒前
李健的小迷弟应助kongbaige采纳,获得10
3秒前
邹万恶发布了新的文献求助10
3秒前
搞怪冷之完成签到 ,获得积分10
3秒前
swify339完成签到,获得积分10
4秒前
typhoon完成签到,获得积分10
4秒前
sugar完成签到,获得积分10
4秒前
lily完成签到,获得积分10
4秒前
自由寄柔完成签到,获得积分10
4秒前
5秒前
Zx_1993应助miao采纳,获得20
5秒前
欧阳蛋蛋鸡完成签到,获得积分10
5秒前
ZJPPPP发布了新的文献求助10
5秒前
cij123完成签到,获得积分10
5秒前
独特的忆彤完成签到 ,获得积分10
6秒前
mc关闭了mc文献求助
6秒前
leisure应助科研通管家采纳,获得10
6秒前
VDC应助科研通管家采纳,获得30
6秒前
liuaoo发布了新的文献求助10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
小青椒应助科研通管家采纳,获得10
7秒前
求助人员应助科研通管家采纳,获得10
7秒前
7秒前
大模型应助科研通管家采纳,获得10
7秒前
自由寄柔发布了新的文献求助30
7秒前
wills应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006