InBi: A Ferroelastic Monolayer with Strain Tunable Spin–Orbit Dirac Points and Carrier Self-Doping Effect

凝聚态物理 单层 应变工程 迪拉克费米子 费米能量 石墨烯 材料科学 布里渊区 Dirac(视频压缩格式) 兴奋剂 物理 纳米技术 电子 量子力学 相变 中微子
作者
Xinkai Ding,Yongheng Ge,Yinglu Jia,Gaoyang Gou,Ziming Zhu,Xiao Cheng Zeng
出处
期刊:ACS Nano [American Chemical Society]
卷期号:16 (12): 21546-21554 被引量:13
标识
DOI:10.1021/acsnano.2c10387
摘要

Semimetallic two-dimensional (2D) Dirac materials beyond graphene, especially 2D materials with robust Dirac points against the spin-orbit coupling (SOC), are still highly sought. Herein, we theoretically demonstrate the InBi monolayer as a long-sought 2D Dirac material whose exotic Dirac Fermionic states cannot be gapped out by SOC. The InBi monolayer with the litharge crystal structure possesses not only 4-fold band degeneracy, linear energy dispersion, and ultrahigh Fermi velocity in the order of 105 m/s, but also spontaneous ferroelasticity that can lead to the orthorhombic lattice deformation and semimetallic electronic structure. Specifically, the symmetry protected spin-orbit Dirac points in 2D InBi are located at the Brillouin Zone (BZ) boundary and near the Fermi level in energy. More importantly, with coexisting spin-orbit Dirac points and spontaneous ferroelasticity, the InBi monolayer exhibits an additional advantage for engineering Dirac Fermionic states by ferroelastic (FE) strain. Energy levels of Dirac points are strongly coupled to FE strain, and the semimetallic electronic structure of the InBi monolayer is also susceptible to the FE strain induced carrier self-doping effect. Depending on the strain orientation within the InBi monolayer, electron and hole Fermi pockets will develop along the two planar directions, leading to the characteristic transport coefficients (as evidenced by our transport simulations based on Boltzmann formalism) for future experimental detection. FE strain tunable Dirac Fermionic states together with the carrier self-doping effect will benefit future development of ultrathin electronic devices with both high carrier mobility and controllable charge conductivities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助蜡笔采纳,获得10
2秒前
自然1111发布了新的文献求助30
2秒前
4秒前
量子星尘发布了新的文献求助30
4秒前
哈哈哈666发布了新的文献求助10
5秒前
卓Celina完成签到,获得积分10
6秒前
bkagyin应助KYRIELIU采纳,获得10
7秒前
7秒前
FanFan应助沧笙踏歌采纳,获得30
8秒前
皮皮凯完成签到,获得积分10
8秒前
ybb完成签到,获得积分10
9秒前
9秒前
科研通AI2S应助gyj1采纳,获得10
9秒前
9秒前
小蘑菇应助淡然钢笔采纳,获得10
11秒前
11秒前
orixero应助八戒的梦想采纳,获得10
11秒前
轻松的丹寒完成签到,获得积分10
12秒前
眯眯眼的裙子完成签到,获得积分10
13秒前
万能图书馆应助稳重的烙采纳,获得10
14秒前
15秒前
自然1111发布了新的文献求助10
15秒前
16秒前
爆米花应助轻松的丹寒采纳,获得10
16秒前
May应助灰灰灰采纳,获得20
16秒前
奋斗灵竹完成签到,获得积分10
17秒前
17秒前
支凌瑶发布了新的文献求助10
17秒前
FashionBoy应助周小鱼采纳,获得10
18秒前
19秒前
haha完成签到,获得积分20
19秒前
19秒前
英姑应助机灵的指甲油采纳,获得10
20秒前
彬彬完成签到,获得积分10
21秒前
haha发布了新的文献求助10
21秒前
shasha完成签到 ,获得积分10
22秒前
22秒前
大模型应助迷人绿茶采纳,获得10
22秒前
1526918042发布了新的文献求助10
23秒前
23秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961206
求助须知:如何正确求助?哪些是违规求助? 3507486
关于积分的说明 11136374
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790557
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186