亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

InBi: A Ferroelastic Monolayer with Strain Tunable Spin–Orbit Dirac Points and Carrier Self-Doping Effect

凝聚态物理 单层 应变工程 迪拉克费米子 费米能量 石墨烯 材料科学 布里渊区 Dirac(视频压缩格式) 兴奋剂 物理 纳米技术 电子 量子力学 相变 中微子
作者
Xinkai Ding,Yongheng Ge,Yinglu Jia,Gaoyang Gou,Ziming Zhu,Xiao Cheng Zeng
出处
期刊:ACS Nano [American Chemical Society]
卷期号:16 (12): 21546-21554 被引量:13
标识
DOI:10.1021/acsnano.2c10387
摘要

Semimetallic two-dimensional (2D) Dirac materials beyond graphene, especially 2D materials with robust Dirac points against the spin-orbit coupling (SOC), are still highly sought. Herein, we theoretically demonstrate the InBi monolayer as a long-sought 2D Dirac material whose exotic Dirac Fermionic states cannot be gapped out by SOC. The InBi monolayer with the litharge crystal structure possesses not only 4-fold band degeneracy, linear energy dispersion, and ultrahigh Fermi velocity in the order of 105 m/s, but also spontaneous ferroelasticity that can lead to the orthorhombic lattice deformation and semimetallic electronic structure. Specifically, the symmetry protected spin-orbit Dirac points in 2D InBi are located at the Brillouin Zone (BZ) boundary and near the Fermi level in energy. More importantly, with coexisting spin-orbit Dirac points and spontaneous ferroelasticity, the InBi monolayer exhibits an additional advantage for engineering Dirac Fermionic states by ferroelastic (FE) strain. Energy levels of Dirac points are strongly coupled to FE strain, and the semimetallic electronic structure of the InBi monolayer is also susceptible to the FE strain induced carrier self-doping effect. Depending on the strain orientation within the InBi monolayer, electron and hole Fermi pockets will develop along the two planar directions, leading to the characteristic transport coefficients (as evidenced by our transport simulations based on Boltzmann formalism) for future experimental detection. FE strain tunable Dirac Fermionic states together with the carrier self-doping effect will benefit future development of ultrathin electronic devices with both high carrier mobility and controllable charge conductivities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shinn发布了新的文献求助10
1秒前
852应助宇宙超人007008采纳,获得10
2秒前
onelastkiss完成签到,获得积分10
4秒前
今后应助周亚平采纳,获得10
5秒前
DODO完成签到,获得积分10
7秒前
Owen应助shinn采纳,获得10
9秒前
11秒前
12秒前
壮观大炮完成签到,获得积分10
15秒前
21秒前
25秒前
25秒前
30秒前
shinn发布了新的文献求助10
32秒前
思柔完成签到,获得积分10
34秒前
36秒前
shinn发布了新的文献求助10
36秒前
坚守完成签到 ,获得积分10
42秒前
yjr发布了新的文献求助10
42秒前
43秒前
搞怪的白云完成签到 ,获得积分10
44秒前
江江江完成签到,获得积分20
45秒前
48秒前
52秒前
瑕不掩瑜发布了新的文献求助10
52秒前
英姑应助吉吉采纳,获得10
54秒前
56秒前
莫愁完成签到 ,获得积分10
58秒前
充电宝应助shinn采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
Owen应助发发采纳,获得30
1分钟前
1分钟前
瑕不掩瑜完成签到,获得积分10
1分钟前
石榴汁的书完成签到,获得积分10
1分钟前
1分钟前
qzp完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772284
求助须知:如何正确求助?哪些是违规求助? 5597270
关于积分的说明 15429424
捐赠科研通 4905304
什么是DOI,文献DOI怎么找? 2639326
邀请新用户注册赠送积分活动 1587253
关于科研通互助平台的介绍 1542112