A prediction model for difficult intubation using skeletal features in patients affected by apnea-hypopnea syndrome

医学 列线图 呼吸不足 插管 围手术期 阻塞性睡眠呼吸暂停 队列 前瞻性队列研究 呼吸暂停 外科 麻醉 内科学 多导睡眠图
作者
Siyi YAN,Mengzhuo GUO,Zhifeng GAO,Haotian WU,Xian LIU,Guoping YIN,Jingying YE,Xiaofei ZHANG,Zhuozhao ZHENG,Huan ZHANG
出处
期刊:Minerva Anestesiologica [Edizioni Minerva Medica]
标识
DOI:10.23736/s0375-9393.22.16869-0
摘要

Obstructive sleep apnea-hypopnea syndrome (OSAHS) has been linked to increased risk of perioperative morbidity and mortality because of difficult intubation (DI). However, there is a lack of clinically validated tools to identify OSAHS patients who are likely to have an increased the risk of DI.For model development, a prospective cohort study included patients with OSAHS who underwent elective surgery between September 2018 to December 2020. The outcome was DI and classified according to the Cormack-Lehane grading. Conventional airway assessment tests, skeletal features, and the severity of OSAHS were recorded, and LASSO regression was used. Validation was performed on an external sample of patients from the same hospital between January 2021 and December 2021.The development (prevalence of DI: 44%) and validation cohorts (prevalence of DI: 32%) included 247 and 82 patients, respectively. Based on the result of LASSO, age and four skeletal features (thyromental height, maximum mandibular protrusion, mandibulohyoid distance, and neck hypokinesis grade) were included in the final model. Discrimination and calibration of the model were satisfactory with high AUC (0.97), sensitivity (88.5%), specificity (94.6%), accuracy (92.7%), PPV (88.5%) and NPV (94.6%) from external validation.Our study developed and externally validated a DI prediction model using skeletal features in OSAHS patients. The final model had an NPV of nearly 95%, suggesting that a simple nomogram including only five predictors was quite helpful for ruling out the presence of difficult intubation in OSAHS patients who underwent elective surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助一鸣采纳,获得10
1秒前
脑洞疼应助Zee采纳,获得10
1秒前
foreverwhy应助嘚嘚采纳,获得30
1秒前
2秒前
ding应助无私的易蓉采纳,获得10
2秒前
2秒前
3秒前
LI完成签到 ,获得积分10
5秒前
Dongbalal关注了科研通微信公众号
6秒前
鱼鱼鱼发布了新的文献求助10
6秒前
wwj恒恒完成签到,获得积分10
7秒前
无私的易蓉完成签到,获得积分10
7秒前
8秒前
苗玉发布了新的文献求助10
8秒前
阳光的羊完成签到,获得积分10
8秒前
赘婿应助AltairKing采纳,获得10
9秒前
9秒前
XZY完成签到 ,获得积分10
10秒前
陈嘻嘻嘻嘻完成签到,获得积分10
10秒前
12秒前
Zee发布了新的文献求助10
14秒前
传奇3应助刘欢采纳,获得10
14秒前
赘婿应助刘欢采纳,获得10
14秒前
annafan应助刘欢采纳,获得10
14秒前
隐形曼青应助刘欢采纳,获得10
14秒前
李爱国应助刘欢采纳,获得10
14秒前
14秒前
李爱国应助刘欢采纳,获得10
14秒前
李爱国应助刘欢采纳,获得10
14秒前
斯文败类应助刘欢采纳,获得10
15秒前
Lin应助刘欢采纳,获得10
15秒前
汉堡包应助刘欢采纳,获得10
15秒前
活泼的曼寒完成签到,获得积分10
15秒前
研友_VZG7GZ应助yhltcm采纳,获得10
15秒前
gloria完成签到,获得积分10
16秒前
负责吃饭发布了新的文献求助10
16秒前
17秒前
18秒前
Dongbalal发布了新的文献求助10
18秒前
19秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464245
求助须知:如何正确求助?哪些是违规求助? 3057540
关于积分的说明 9057583
捐赠科研通 2747637
什么是DOI,文献DOI怎么找? 1507432
科研通“疑难数据库(出版商)”最低求助积分说明 696553
邀请新用户注册赠送积分活动 696083