DATFuse: Infrared and Visible Image Fusion via Dual Attention Transformer

计算机科学 人工智能 源代码 图像融合 变压器 像素 计算机视觉 特征提取 卷积神经网络 模式识别(心理学) 图像(数学) 工程类 操作系统 电气工程 电压
作者
Wei Tang,Fazhi He,Yü Liu,Yansong Duan,Tongzhen Si
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (7): 3159-3172 被引量:113
标识
DOI:10.1109/tcsvt.2023.3234340
摘要

The fusion of infrared and visible images aims to generate a composite image that can simultaneously contain the thermal radiation information of an infrared image and the plentiful texture details of a visible image to detect targets under various weather conditions with a high spatial resolution of scenes. Previous deep fusion models were generally based on convolutional operations, resulting in a limited ability to represent long-range context information. In this paper, we propose a novel end-to-end model for infrared and visible image fusion via a dual attention Transformer termed DATFuse. To accurately examine the significant areas of the source images, a dual attention residual module (DARM) is designed for important feature extraction. To further model long-range dependencies, a Transformer module (TRM) is devised for global complementary information preservation. Moreover, a loss function that consists of three terms, namely, pixel loss, gradient loss, and structural loss, is designed to train the proposed model in an unsupervised manner. This can avoid manually designing complicated activity-level measurement and fusion strategies in traditional image fusion methods. Extensive experiments on public datasets reveal that our DATFuse outperforms other representative state-of-the-art approaches in both qualitative and quantitative assessments. The proposed model is also extended to address other infrared and visible image fusion tasks without fine-tuning, and the promising results demonstrate that it has good generalization ability. The source code is available at https://github.com/tthinking/DATFuse .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助凌晨五点的采纳,获得10
刚刚
京阿尼发布了新的文献求助10
1秒前
1秒前
陶l发布了新的文献求助10
3秒前
DZE发布了新的文献求助10
3秒前
3秒前
墨白白完成签到,获得积分10
3秒前
3秒前
小牟同学完成签到,获得积分10
3秒前
zhang001应助ggg采纳,获得10
4秒前
4秒前
5秒前
缓慢平蓝发布了新的文献求助10
6秒前
6秒前
Ga发布了新的文献求助10
6秒前
调研昵称发布了新的文献求助10
7秒前
脑洞疼应助泯珉采纳,获得10
8秒前
9秒前
赘婿应助发嗲的绿柏采纳,获得10
11秒前
12秒前
我是老大应助academician采纳,获得10
13秒前
华仔应助asd采纳,获得30
13秒前
皮雅霜完成签到,获得积分10
13秒前
14秒前
唐展通发布了新的文献求助10
15秒前
15秒前
16秒前
小年糕完成签到,获得积分20
16秒前
嗯哼完成签到 ,获得积分10
16秒前
Owen应助无奈玫瑰采纳,获得30
16秒前
18秒前
cc完成签到 ,获得积分10
19秒前
聪慧小燕发布了新的文献求助10
19秒前
20秒前
开朗的柜子完成签到 ,获得积分10
20秒前
22秒前
22秒前
22秒前
烟花应助向日葵采纳,获得10
23秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434089
求助须知:如何正确求助?哪些是违规求助? 3031323
关于积分的说明 8941651
捐赠科研通 2719262
什么是DOI,文献DOI怎么找? 1491703
科研通“疑难数据库(出版商)”最低求助积分说明 689427
邀请新用户注册赠送积分活动 685580