Radiomics-based machine learning models for prediction of medulloblastoma subgroups: a systematic review and meta-analysis of the diagnostic test performance

髓母细胞瘤 医学 无线电技术 荟萃分析 检查表 人口 肿瘤科 内科学 病理 放射科 心理学 环境卫生 认知心理学
作者
Mert Karabacak,Burak Berksu Ozkara,Admir Öztürk,Busra Kaya,Zeynep Cirak,Ece Orak,Zeynep Ozcan
出处
期刊:Acta Radiologica [SAGE]
卷期号:64 (5): 1994-2003 被引量:16
标识
DOI:10.1177/02841851221143496
摘要

Background Medulloblastomas are a major cause of cancer-related mortality in the pediatric population. Four molecular groups have been identified, and these molecular groups drive risk stratification, prognostic modeling, and the development of novel treatment modalities. It has been demonstrated that radiomics-based machine learning (ML) models are effective at predicting the diagnosis, molecular class, and grades of CNS tumors. Purpose To assess radiomics-based ML models’ diagnostic performance in predicting medulloblastoma subgroups and the methodological quality of the studies. Material and Methods A comprehensive literature search was performed on PubMed; the last search was conducted on 1 May 2022. Studies that predicted all four medulloblastoma subgroups in patients with histopathologically confirmed medulloblastoma and reporting area under the curve (AUC) values were included in the study. The quality assessments were conducted according to the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) and Checklist for Artificial Intelligence in Medical Imaging (CLAIM). A meta-analysis of radiomics-based ML studies’ diagnostic performance for the preoperative evaluation of medulloblastoma subgrouping was performed. Results Five studies were included in this meta-analysis. Regarding patient selection, two studies indicated an unclear risk of bias according to the QUADAS-2. The five studies had an average CLAIM score and compliance score of 23.2 and 0.57, respectively. The meta-analysis showed pooled AUCs of 0.88, 0.82, 0.83, and 0.88 for WNT, SHH, group 3, and group 4 for classification, respectively. Conclusion Radiomics-based ML studies have good classification performance in predicting medulloblastoma subgroups, with AUCs >0.80 in every subgroup. To be applied to clinical practice, they need methodological quality improvement and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5656完成签到 ,获得积分10
刚刚
美丽的冰枫完成签到,获得积分10
3秒前
4秒前
心如止水发布了新的文献求助10
4秒前
BIGDEEK完成签到,获得积分10
5秒前
5秒前
Kyone完成签到,获得积分10
5秒前
sophia_L完成签到,获得积分10
6秒前
共享精神应助胖虎采纳,获得10
7秒前
昏睡的傻姑完成签到,获得积分10
7秒前
韩_完成签到,获得积分10
7秒前
赘婿应助张一二二二采纳,获得10
10秒前
10秒前
orixero应助大气的香烟采纳,获得10
10秒前
11秒前
工科小白完成签到,获得积分10
12秒前
义气的断秋完成签到,获得积分10
12秒前
抹茶完成签到 ,获得积分10
12秒前
浮游应助迷路的映安采纳,获得10
13秒前
工科小白发布了新的文献求助10
14秒前
xiaoxiao完成签到,获得积分10
15秒前
小蘑菇应助大晨采纳,获得10
16秒前
kevin1018发布了新的文献求助10
16秒前
Dr.Joseph发布了新的文献求助10
16秒前
hobowei完成签到 ,获得积分10
17秒前
17秒前
rsimap360完成签到,获得积分10
18秒前
胖虎完成签到,获得积分10
18秒前
老北京发布了新的文献求助10
19秒前
21秒前
Zx_1993应助奶酪战神采纳,获得20
21秒前
23秒前
24秒前
wqr发布了新的文献求助10
24秒前
27秒前
华仔应助兰真纯洁采纳,获得10
28秒前
沙与沫发布了新的文献求助10
28秒前
VIAI发布了新的文献求助10
29秒前
老北京完成签到,获得积分10
31秒前
英姑应助大池采纳,获得10
32秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5214407
求助须知:如何正确求助?哪些是违规求助? 4389945
关于积分的说明 13668383
捐赠科研通 4251340
什么是DOI,文献DOI怎么找? 2332582
邀请新用户注册赠送积分活动 1330236
关于科研通互助平台的介绍 1283883