Radiomics-based machine learning models for prediction of medulloblastoma subgroups: a systematic review and meta-analysis of the diagnostic test performance

髓母细胞瘤 医学 无线电技术 荟萃分析 检查表 人口 肿瘤科 内科学 病理 放射科 心理学 环境卫生 认知心理学
作者
Mert Karabacak,Burak Berksu Ozkara,Admir Öztürk,Busra Kaya,Zeynep Cirak,Ece Orak,Zeynep Ozcan
出处
期刊:Acta Radiologica [SAGE]
卷期号:64 (5): 1994-2003 被引量:16
标识
DOI:10.1177/02841851221143496
摘要

Background Medulloblastomas are a major cause of cancer-related mortality in the pediatric population. Four molecular groups have been identified, and these molecular groups drive risk stratification, prognostic modeling, and the development of novel treatment modalities. It has been demonstrated that radiomics-based machine learning (ML) models are effective at predicting the diagnosis, molecular class, and grades of CNS tumors. Purpose To assess radiomics-based ML models’ diagnostic performance in predicting medulloblastoma subgroups and the methodological quality of the studies. Material and Methods A comprehensive literature search was performed on PubMed; the last search was conducted on 1 May 2022. Studies that predicted all four medulloblastoma subgroups in patients with histopathologically confirmed medulloblastoma and reporting area under the curve (AUC) values were included in the study. The quality assessments were conducted according to the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) and Checklist for Artificial Intelligence in Medical Imaging (CLAIM). A meta-analysis of radiomics-based ML studies’ diagnostic performance for the preoperative evaluation of medulloblastoma subgrouping was performed. Results Five studies were included in this meta-analysis. Regarding patient selection, two studies indicated an unclear risk of bias according to the QUADAS-2. The five studies had an average CLAIM score and compliance score of 23.2 and 0.57, respectively. The meta-analysis showed pooled AUCs of 0.88, 0.82, 0.83, and 0.88 for WNT, SHH, group 3, and group 4 for classification, respectively. Conclusion Radiomics-based ML studies have good classification performance in predicting medulloblastoma subgroups, with AUCs >0.80 in every subgroup. To be applied to clinical practice, they need methodological quality improvement and stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
四海发布了新的文献求助10
1秒前
炸鸡发布了新的文献求助10
1秒前
黄豆完成签到,获得积分10
2秒前
2秒前
Jasper应助jj采纳,获得10
3秒前
驿路梨花完成签到,获得积分10
3秒前
3秒前
3秒前
粗暴的鱼发布了新的文献求助10
5秒前
太叔易云发布了新的文献求助10
5秒前
晓晓完成签到,获得积分10
6秒前
Tracy.完成签到,获得积分10
6秒前
6秒前
6秒前
nuliya发布了新的文献求助10
7秒前
zsy发布了新的文献求助10
9秒前
善良的樱完成签到 ,获得积分10
9秒前
淡淡尔烟发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
阿依咕噜完成签到,获得积分10
11秒前
NexusExplorer应助炸鸡采纳,获得10
11秒前
11秒前
YUYUYU发布了新的文献求助10
12秒前
JamesPei应助美女采纳,获得10
12秒前
jia完成签到 ,获得积分10
12秒前
传奇3应助小蚂蚁采纳,获得10
14秒前
温柔的秋柳完成签到,获得积分10
15秒前
15秒前
柏林寒冬应助wenqiliu采纳,获得10
17秒前
寒冷猫咪发布了新的文献求助20
17秒前
豌豆炸薯片完成签到,获得积分10
17秒前
CodeCraft应助太叔易云采纳,获得10
19秒前
赵海帆完成签到,获得积分10
19秒前
科研人完成签到,获得积分10
19秒前
20秒前
20秒前
FashionBoy应助LucyLi采纳,获得10
21秒前
21秒前
无花果应助满意芯采纳,获得10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594261
求助须知:如何正确求助?哪些是违规求助? 4679954
关于积分的说明 14812329
捐赠科研通 4646568
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502822
关于科研通互助平台的介绍 1469497