Radiomics-based machine learning models for prediction of medulloblastoma subgroups: a systematic review and meta-analysis of the diagnostic test performance

髓母细胞瘤 医学 无线电技术 荟萃分析 检查表 人口 肿瘤科 内科学 病理 放射科 心理学 环境卫生 认知心理学
作者
Mert Karabacak,Burak Berksu Ozkara,Admir Öztürk,Busra Kaya,Zeynep Cirak,Ece Orak,Zeynep Ozcan
出处
期刊:Acta Radiologica [SAGE Publishing]
卷期号:64 (5): 1994-2003 被引量:16
标识
DOI:10.1177/02841851221143496
摘要

Background Medulloblastomas are a major cause of cancer-related mortality in the pediatric population. Four molecular groups have been identified, and these molecular groups drive risk stratification, prognostic modeling, and the development of novel treatment modalities. It has been demonstrated that radiomics-based machine learning (ML) models are effective at predicting the diagnosis, molecular class, and grades of CNS tumors. Purpose To assess radiomics-based ML models’ diagnostic performance in predicting medulloblastoma subgroups and the methodological quality of the studies. Material and Methods A comprehensive literature search was performed on PubMed; the last search was conducted on 1 May 2022. Studies that predicted all four medulloblastoma subgroups in patients with histopathologically confirmed medulloblastoma and reporting area under the curve (AUC) values were included in the study. The quality assessments were conducted according to the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) and Checklist for Artificial Intelligence in Medical Imaging (CLAIM). A meta-analysis of radiomics-based ML studies’ diagnostic performance for the preoperative evaluation of medulloblastoma subgrouping was performed. Results Five studies were included in this meta-analysis. Regarding patient selection, two studies indicated an unclear risk of bias according to the QUADAS-2. The five studies had an average CLAIM score and compliance score of 23.2 and 0.57, respectively. The meta-analysis showed pooled AUCs of 0.88, 0.82, 0.83, and 0.88 for WNT, SHH, group 3, and group 4 for classification, respectively. Conclusion Radiomics-based ML studies have good classification performance in predicting medulloblastoma subgroups, with AUCs >0.80 in every subgroup. To be applied to clinical practice, they need methodological quality improvement and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
smileriver完成签到,获得积分10
刚刚
吃水果的老虎完成签到,获得积分10
刚刚
Rahul完成签到,获得积分10
1秒前
勤恳的仰发布了新的文献求助10
1秒前
我独舞完成签到 ,获得积分10
1秒前
FIN应助hwq采纳,获得10
2秒前
一鸣大人发布了新的文献求助10
2秒前
cua完成签到,获得积分10
2秒前
BANG完成签到,获得积分10
2秒前
狄语蕊完成签到,获得积分10
2秒前
OccupyMars2025关注了科研通微信公众号
3秒前
朱凌娇发布了新的文献求助10
3秒前
珍珠糖发布了新的文献求助10
3秒前
优雅盼海发布了新的文献求助10
3秒前
沉淀完成签到,获得积分10
4秒前
科研助手6应助岳凯采纳,获得10
4秒前
kevin完成签到 ,获得积分10
4秒前
5秒前
5秒前
CCCCPUTA完成签到,获得积分10
6秒前
Haonan完成签到,获得积分10
6秒前
Refuel完成签到,获得积分10
6秒前
终梦发布了新的文献求助20
7秒前
积极的如之完成签到,获得积分10
7秒前
7秒前
xueshufengbujue完成签到,获得积分10
7秒前
秋慕蕊发布了新的文献求助10
8秒前
ColinWine完成签到,获得积分10
8秒前
cua发布了新的文献求助20
9秒前
隐形的乐枫完成签到,获得积分10
10秒前
elidan发布了新的文献求助10
10秒前
李健应助Fantansy采纳,获得10
10秒前
樱sky完成签到,获得积分10
10秒前
10秒前
林屿溪完成签到,获得积分10
10秒前
Jupiter完成签到,获得积分10
10秒前
Henry完成签到,获得积分10
10秒前
11秒前
完美世界应助珍珠糖采纳,获得10
11秒前
cxt驳回了爆米花应助
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009167
求助须知:如何正确求助?哪些是违规求助? 3549013
关于积分的说明 11300491
捐赠科研通 3283494
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886146
科研通“疑难数据库(出版商)”最低求助积分说明 811259