亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiomics-based machine learning models for prediction of medulloblastoma subgroups: a systematic review and meta-analysis of the diagnostic test performance

髓母细胞瘤 医学 无线电技术 荟萃分析 检查表 人口 肿瘤科 内科学 病理 放射科 心理学 环境卫生 认知心理学
作者
Mert Karabacak,Burak Berksu Ozkara,Admir Ozturk,Busra Kaya,Zeynep Cirak,Ece Orak,Zeynep Ozcan
出处
期刊:Acta Radiologica [SAGE Publishing]
卷期号:64 (5): 1994-2003 被引量:14
标识
DOI:10.1177/02841851221143496
摘要

Background Medulloblastomas are a major cause of cancer-related mortality in the pediatric population. Four molecular groups have been identified, and these molecular groups drive risk stratification, prognostic modeling, and the development of novel treatment modalities. It has been demonstrated that radiomics-based machine learning (ML) models are effective at predicting the diagnosis, molecular class, and grades of CNS tumors. Purpose To assess radiomics-based ML models’ diagnostic performance in predicting medulloblastoma subgroups and the methodological quality of the studies. Material and Methods A comprehensive literature search was performed on PubMed; the last search was conducted on 1 May 2022. Studies that predicted all four medulloblastoma subgroups in patients with histopathologically confirmed medulloblastoma and reporting area under the curve (AUC) values were included in the study. The quality assessments were conducted according to the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) and Checklist for Artificial Intelligence in Medical Imaging (CLAIM). A meta-analysis of radiomics-based ML studies’ diagnostic performance for the preoperative evaluation of medulloblastoma subgrouping was performed. Results Five studies were included in this meta-analysis. Regarding patient selection, two studies indicated an unclear risk of bias according to the QUADAS-2. The five studies had an average CLAIM score and compliance score of 23.2 and 0.57, respectively. The meta-analysis showed pooled AUCs of 0.88, 0.82, 0.83, and 0.88 for WNT, SHH, group 3, and group 4 for classification, respectively. Conclusion Radiomics-based ML studies have good classification performance in predicting medulloblastoma subgroups, with AUCs >0.80 in every subgroup. To be applied to clinical practice, they need methodological quality improvement and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
灵巧若冰发布了新的文献求助10
2秒前
fransiccarey完成签到,获得积分10
9秒前
czjjjjj发布了新的文献求助10
10秒前
超帅的向卉完成签到,获得积分10
23秒前
我是老大应助桃子采纳,获得30
23秒前
Lialia完成签到 ,获得积分10
26秒前
追三完成签到 ,获得积分10
29秒前
henxi发布了新的文献求助10
30秒前
灵巧若冰完成签到,获得积分10
36秒前
科研通AI5应助搞怪网络采纳,获得10
36秒前
科研通AI5应助llyric采纳,获得10
40秒前
YifanWang应助科研通管家采纳,获得20
46秒前
46秒前
YifanWang应助科研通管家采纳,获得20
46秒前
YifanWang应助科研通管家采纳,获得10
46秒前
柠檬完成签到,获得积分10
48秒前
felix发布了新的文献求助10
56秒前
Aaernan完成签到 ,获得积分10
57秒前
直率手机完成签到,获得积分10
1分钟前
kento发布了新的文献求助30
1分钟前
落落落完成签到,获得积分10
1分钟前
小宋完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
felix完成签到,获得积分10
1分钟前
YAN发布了新的文献求助10
1分钟前
大力忘幽发布了新的文献求助10
1分钟前
彭于晏应助超帅的向卉采纳,获得10
1分钟前
pc发布了新的文献求助10
1分钟前
洋子完成签到,获得积分10
1分钟前
程住气完成签到 ,获得积分10
1分钟前
搜集达人应助爱听歌笑寒采纳,获得10
1分钟前
1分钟前
1分钟前
骆凤灵完成签到 ,获得积分10
1分钟前
爱听歌笑寒完成签到,获得积分10
1分钟前
TBI发布了新的文献求助10
1分钟前
1分钟前
张可完成签到 ,获得积分10
1分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Homolytic deamination of amino-alcohols 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729069
求助须知:如何正确求助?哪些是违规求助? 3274176
关于积分的说明 9984661
捐赠科研通 2989456
什么是DOI,文献DOI怎么找? 1640437
邀请新用户注册赠送积分活动 779205
科研通“疑难数据库(出版商)”最低求助积分说明 748083