已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Radiomics-based machine learning models for prediction of medulloblastoma subgroups: a systematic review and meta-analysis of the diagnostic test performance

髓母细胞瘤 医学 无线电技术 荟萃分析 检查表 人口 肿瘤科 内科学 病理 放射科 心理学 环境卫生 认知心理学
作者
Mert Karabacak,Burak Berksu Ozkara,Admir Öztürk,Busra Kaya,Zeynep Cirak,Ece Orak,Zeynep Ozcan
出处
期刊:Acta Radiologica [SAGE]
卷期号:64 (5): 1994-2003 被引量:16
标识
DOI:10.1177/02841851221143496
摘要

Background Medulloblastomas are a major cause of cancer-related mortality in the pediatric population. Four molecular groups have been identified, and these molecular groups drive risk stratification, prognostic modeling, and the development of novel treatment modalities. It has been demonstrated that radiomics-based machine learning (ML) models are effective at predicting the diagnosis, molecular class, and grades of CNS tumors. Purpose To assess radiomics-based ML models’ diagnostic performance in predicting medulloblastoma subgroups and the methodological quality of the studies. Material and Methods A comprehensive literature search was performed on PubMed; the last search was conducted on 1 May 2022. Studies that predicted all four medulloblastoma subgroups in patients with histopathologically confirmed medulloblastoma and reporting area under the curve (AUC) values were included in the study. The quality assessments were conducted according to the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) and Checklist for Artificial Intelligence in Medical Imaging (CLAIM). A meta-analysis of radiomics-based ML studies’ diagnostic performance for the preoperative evaluation of medulloblastoma subgrouping was performed. Results Five studies were included in this meta-analysis. Regarding patient selection, two studies indicated an unclear risk of bias according to the QUADAS-2. The five studies had an average CLAIM score and compliance score of 23.2 and 0.57, respectively. The meta-analysis showed pooled AUCs of 0.88, 0.82, 0.83, and 0.88 for WNT, SHH, group 3, and group 4 for classification, respectively. Conclusion Radiomics-based ML studies have good classification performance in predicting medulloblastoma subgroups, with AUCs >0.80 in every subgroup. To be applied to clinical practice, they need methodological quality improvement and stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang5945完成签到 ,获得积分10
刚刚
6秒前
8秒前
重生成搞学术的卤蛋完成签到 ,获得积分10
8秒前
等于零完成签到 ,获得积分10
11秒前
mmd完成签到 ,获得积分10
13秒前
13秒前
16秒前
18秒前
22秒前
JamesPei应助请输入昵称采纳,获得10
23秒前
SI发布了新的文献求助10
24秒前
知知完成签到 ,获得积分10
25秒前
26秒前
bkagyin应助hvgjgfjhgjh采纳,获得10
26秒前
小川完成签到,获得积分10
30秒前
30秒前
指南针指北完成签到 ,获得积分10
31秒前
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
32秒前
田様应助科研通管家采纳,获得10
32秒前
32秒前
Orange应助科研通管家采纳,获得10
32秒前
32秒前
完美世界应助科研通管家采纳,获得10
32秒前
32秒前
科研通AI6应助科研通管家采纳,获得10
32秒前
32秒前
34秒前
滴嘟滴嘟完成签到 ,获得积分10
35秒前
36秒前
喜悦的半青完成签到 ,获得积分10
38秒前
lana完成签到,获得积分10
38秒前
40秒前
hvgjgfjhgjh发布了新的文献求助10
40秒前
43秒前
lzy完成签到 ,获得积分10
45秒前
hvgjgfjhgjh完成签到,获得积分10
46秒前
kqhys完成签到,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681089
求助须知:如何正确求助?哪些是违规求助? 5004322
关于积分的说明 15174896
捐赠科研通 4840762
什么是DOI,文献DOI怎么找? 2594437
邀请新用户注册赠送积分活动 1547542
关于科研通互助平台的介绍 1505470