重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Radiomics-based machine learning models for prediction of medulloblastoma subgroups: a systematic review and meta-analysis of the diagnostic test performance

髓母细胞瘤 医学 无线电技术 荟萃分析 检查表 人口 肿瘤科 内科学 病理 放射科 心理学 环境卫生 认知心理学
作者
Mert Karabacak,Burak Berksu Ozkara,Admir Öztürk,Busra Kaya,Zeynep Cirak,Ece Orak,Zeynep Ozcan
出处
期刊:Acta Radiologica [SAGE]
卷期号:64 (5): 1994-2003 被引量:16
标识
DOI:10.1177/02841851221143496
摘要

Background Medulloblastomas are a major cause of cancer-related mortality in the pediatric population. Four molecular groups have been identified, and these molecular groups drive risk stratification, prognostic modeling, and the development of novel treatment modalities. It has been demonstrated that radiomics-based machine learning (ML) models are effective at predicting the diagnosis, molecular class, and grades of CNS tumors. Purpose To assess radiomics-based ML models’ diagnostic performance in predicting medulloblastoma subgroups and the methodological quality of the studies. Material and Methods A comprehensive literature search was performed on PubMed; the last search was conducted on 1 May 2022. Studies that predicted all four medulloblastoma subgroups in patients with histopathologically confirmed medulloblastoma and reporting area under the curve (AUC) values were included in the study. The quality assessments were conducted according to the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) and Checklist for Artificial Intelligence in Medical Imaging (CLAIM). A meta-analysis of radiomics-based ML studies’ diagnostic performance for the preoperative evaluation of medulloblastoma subgrouping was performed. Results Five studies were included in this meta-analysis. Regarding patient selection, two studies indicated an unclear risk of bias according to the QUADAS-2. The five studies had an average CLAIM score and compliance score of 23.2 and 0.57, respectively. The meta-analysis showed pooled AUCs of 0.88, 0.82, 0.83, and 0.88 for WNT, SHH, group 3, and group 4 for classification, respectively. Conclusion Radiomics-based ML studies have good classification performance in predicting medulloblastoma subgroups, with AUCs >0.80 in every subgroup. To be applied to clinical practice, they need methodological quality improvement and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蛋蛋完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
我是老大应助大力的依丝采纳,获得10
2秒前
活泼的鼠标完成签到 ,获得积分10
2秒前
3秒前
lili_jinjin发布了新的文献求助10
3秒前
YiqingGu发布了新的文献求助10
3秒前
3秒前
3秒前
小麦发布了新的文献求助10
4秒前
清新的老四完成签到,获得积分10
4秒前
4秒前
4秒前
汉堡包应助大道采纳,获得10
4秒前
4秒前
好天气完成签到,获得积分20
4秒前
5秒前
fff关注了科研通微信公众号
5秒前
aaaaa发布了新的文献求助10
5秒前
Jennifer应助yiy37采纳,获得10
5秒前
yu发布了新的文献求助20
5秒前
5秒前
6秒前
6秒前
cortex完成签到 ,获得积分10
7秒前
科研通AI6应助提子采纳,获得30
7秒前
7秒前
糖糖完成签到,获得积分20
7秒前
8秒前
8秒前
李文华发布了新的文献求助10
8秒前
禹霏霏发布了新的文献求助10
8秒前
8秒前
科研通AI6应助复杂冰淇淋采纳,获得10
9秒前
纯真寻冬完成签到,获得积分10
9秒前
WYN完成签到,获得积分10
9秒前
赵芳发布了新的文献求助30
9秒前
科研通AI6应助长风采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466072
求助须知:如何正确求助?哪些是违规求助? 4570135
关于积分的说明 14322892
捐赠科研通 4496608
什么是DOI,文献DOI怎么找? 2463448
邀请新用户注册赠送积分活动 1452319
关于科研通互助平台的介绍 1427516