Radiomics-based machine learning models for prediction of medulloblastoma subgroups: a systematic review and meta-analysis of the diagnostic test performance

髓母细胞瘤 医学 无线电技术 荟萃分析 检查表 人口 肿瘤科 内科学 病理 放射科 心理学 环境卫生 认知心理学
作者
Mert Karabacak,Burak Berksu Ozkara,Admir Öztürk,Busra Kaya,Zeynep Cirak,Ece Orak,Zeynep Ozcan
出处
期刊:Acta Radiologica [SAGE]
卷期号:64 (5): 1994-2003 被引量:16
标识
DOI:10.1177/02841851221143496
摘要

Background Medulloblastomas are a major cause of cancer-related mortality in the pediatric population. Four molecular groups have been identified, and these molecular groups drive risk stratification, prognostic modeling, and the development of novel treatment modalities. It has been demonstrated that radiomics-based machine learning (ML) models are effective at predicting the diagnosis, molecular class, and grades of CNS tumors. Purpose To assess radiomics-based ML models’ diagnostic performance in predicting medulloblastoma subgroups and the methodological quality of the studies. Material and Methods A comprehensive literature search was performed on PubMed; the last search was conducted on 1 May 2022. Studies that predicted all four medulloblastoma subgroups in patients with histopathologically confirmed medulloblastoma and reporting area under the curve (AUC) values were included in the study. The quality assessments were conducted according to the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) and Checklist for Artificial Intelligence in Medical Imaging (CLAIM). A meta-analysis of radiomics-based ML studies’ diagnostic performance for the preoperative evaluation of medulloblastoma subgrouping was performed. Results Five studies were included in this meta-analysis. Regarding patient selection, two studies indicated an unclear risk of bias according to the QUADAS-2. The five studies had an average CLAIM score and compliance score of 23.2 and 0.57, respectively. The meta-analysis showed pooled AUCs of 0.88, 0.82, 0.83, and 0.88 for WNT, SHH, group 3, and group 4 for classification, respectively. Conclusion Radiomics-based ML studies have good classification performance in predicting medulloblastoma subgroups, with AUCs >0.80 in every subgroup. To be applied to clinical practice, they need methodological quality improvement and stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希达通完成签到 ,获得积分10
1秒前
alvis完成签到 ,获得积分10
1秒前
2秒前
哥哥完成签到 ,获得积分10
5秒前
欢呼妙菱完成签到,获得积分10
7秒前
忽晚完成签到 ,获得积分10
7秒前
9秒前
追寻麦片完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
Much完成签到 ,获得积分10
11秒前
典雅问寒应助zongzi12138采纳,获得10
11秒前
活泼草莓完成签到 ,获得积分10
12秒前
纪靖雁完成签到 ,获得积分10
12秒前
掠影完成签到,获得积分10
12秒前
Bake完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
许xu发布了新的文献求助10
15秒前
田1986完成签到,获得积分10
15秒前
忐忑的书桃完成签到 ,获得积分10
16秒前
知了完成签到 ,获得积分10
17秒前
caicai完成签到,获得积分10
17秒前
18秒前
ylyao完成签到,获得积分10
20秒前
小钥匙完成签到 ,获得积分10
20秒前
21秒前
wxx完成签到,获得积分10
21秒前
应见惯完成签到 ,获得积分10
24秒前
chenyunxia完成签到,获得积分10
25秒前
月冷完成签到 ,获得积分10
26秒前
28秒前
量子星尘发布了新的文献求助10
28秒前
李y梅子完成签到 ,获得积分10
28秒前
29秒前
俊逸的幻桃完成签到 ,获得积分10
29秒前
DD完成签到 ,获得积分20
30秒前
雨旸时若完成签到,获得积分10
30秒前
安详的冷安完成签到,获得积分10
30秒前
linfordlu完成签到,获得积分0
31秒前
无事完成签到 ,获得积分10
31秒前
zongzi12138完成签到,获得积分0
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773428
求助须知:如何正确求助?哪些是违规求助? 5611061
关于积分的说明 15431143
捐赠科研通 4905922
什么是DOI,文献DOI怎么找? 2639929
邀请新用户注册赠送积分活动 1587829
关于科研通互助平台的介绍 1542833