Toward Quantitative Surface-Enhanced Raman Scattering with Plasmonic Nanoparticles: Multiscale View on Heterogeneities in Particle Morphology, Surface Modification, Interface, and Analytical Protocols

化学 等离子纳米粒子 拉曼散射 纳米颗粒 纳米结构 纳米技术 等离子体子 拉曼光谱 光学 光电子学 物理 材料科学
作者
Jiwoong Son,Gyeong‐Hwan Kim,Yeonhee Lee,Chungyeon Lee,Seungsang Cha,Jwa‐Min Nam
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:144 (49): 22337-22351 被引量:53
标识
DOI:10.1021/jacs.2c05950
摘要

Surface-enhanced Raman scattering (SERS) provides significantly enhanced Raman scattering signals from molecules adsorbed on plasmonic nanostructures, as well as the molecules' vibrational fingerprints. Plasmonic nanoparticle systems are particularly powerful for SERS substrates as they provide a wide range of structural features and plasmonic couplings to boost the enhancement, often up to >108-1010. Nevertheless, nanoparticle-based SERS is not widely utilized as a means for reliable quantitative measurement of molecules largely due to limited controllability, uniformity, and scalability of plasmonic nanoparticles, poor molecular modification chemistry, and a lack of widely used analytical protocols for SERS. Furthermore, multiscale issues with plasmonic nanoparticle systems that range from atomic and molecular scales to assembled nanostructure scale are difficult to simultaneously control, analyze, and address. In this perspective, we introduce and discuss the design principles and key issues in preparing SERS nanoparticle substrates and the recent studies on the uniform and controllable synthesis and newly emerging machine learning-based analysis of plasmonic nanoparticle systems for quantitative SERS. Specifically, the multiscale point of view with plasmonic nanoparticle systems toward quantitative SERS is provided throughout this perspective. Furthermore, issues with correctly estimating and comparing SERS enhancement factors are discussed, and newly emerging statistical and artificial intelligence approaches for analyzing complex SERS systems are introduced and scrutinized to address challenges that cannot be fully resolved through synthetic improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yitang完成签到,获得积分10
1秒前
www完成签到,获得积分10
1秒前
zhenzhen发布了新的文献求助10
1秒前
飞羽发布了新的文献求助10
1秒前
江沅完成签到 ,获得积分10
1秒前
2秒前
2秒前
Sean完成签到,获得积分10
2秒前
兜兜完成签到 ,获得积分10
2秒前
羊羊羊发布了新的文献求助10
3秒前
Rui完成签到,获得积分10
3秒前
bigger.b完成签到,获得积分10
3秒前
Nerissa完成签到,获得积分10
3秒前
Dr.Tang发布了新的文献求助10
3秒前
3秒前
田様应助笑点低蜜蜂采纳,获得10
3秒前
英俊的铭应助么系么系采纳,获得10
4秒前
ding应助寒冷的奇异果采纳,获得10
4秒前
lx发布了新的文献求助10
5秒前
舒适念真发布了新的文献求助10
5秒前
沉默哈密瓜完成签到 ,获得积分10
6秒前
身处人海完成签到,获得积分10
6秒前
Singularity应助暴躁的安柏采纳,获得10
6秒前
Singularity应助暴躁的安柏采纳,获得10
6秒前
大模型应助皓月千里采纳,获得10
6秒前
6秒前
Jim完成签到,获得积分10
7秒前
尼亚吉拉发布了新的文献求助10
7秒前
sternen发布了新的文献求助30
7秒前
7秒前
7秒前
迪迦驳回了所所应助
8秒前
猪猪hero发布了新的文献求助10
8秒前
热心芷烟完成签到,获得积分10
8秒前
8秒前
敏捷的猪猪侠完成签到,获得积分10
9秒前
9秒前
9秒前
咕噜仔发布了新的文献求助50
9秒前
诚c发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678