Toward Quantitative Surface-Enhanced Raman Scattering with Plasmonic Nanoparticles: Multiscale View on Heterogeneities in Particle Morphology, Surface Modification, Interface, and Analytical Protocols

化学 等离子纳米粒子 拉曼散射 纳米颗粒 纳米结构 纳米技术 等离子体子 拉曼光谱 光学 光电子学 物理 材料科学
作者
Jiwoong Son,Gyeong‐Hwan Kim,Yeonhee Lee,Chungyeon Lee,Seungsang Cha,Jwa‐Min Nam
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:144 (49): 22337-22351 被引量:47
标识
DOI:10.1021/jacs.2c05950
摘要

Surface-enhanced Raman scattering (SERS) provides significantly enhanced Raman scattering signals from molecules adsorbed on plasmonic nanostructures, as well as the molecules' vibrational fingerprints. Plasmonic nanoparticle systems are particularly powerful for SERS substrates as they provide a wide range of structural features and plasmonic couplings to boost the enhancement, often up to >108-1010. Nevertheless, nanoparticle-based SERS is not widely utilized as a means for reliable quantitative measurement of molecules largely due to limited controllability, uniformity, and scalability of plasmonic nanoparticles, poor molecular modification chemistry, and a lack of widely used analytical protocols for SERS. Furthermore, multiscale issues with plasmonic nanoparticle systems that range from atomic and molecular scales to assembled nanostructure scale are difficult to simultaneously control, analyze, and address. In this perspective, we introduce and discuss the design principles and key issues in preparing SERS nanoparticle substrates and the recent studies on the uniform and controllable synthesis and newly emerging machine learning-based analysis of plasmonic nanoparticle systems for quantitative SERS. Specifically, the multiscale point of view with plasmonic nanoparticle systems toward quantitative SERS is provided throughout this perspective. Furthermore, issues with correctly estimating and comparing SERS enhancement factors are discussed, and newly emerging statistical and artificial intelligence approaches for analyzing complex SERS systems are introduced and scrutinized to address challenges that cannot be fully resolved through synthetic improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ramu完成签到,获得积分10
刚刚
刚刚
liangao完成签到,获得积分10
刚刚
1+1完成签到,获得积分0
1秒前
1秒前
善学以致用应助Liu采纳,获得30
1秒前
ding应助iufan采纳,获得10
1秒前
1秒前
harmony完成签到,获得积分10
1秒前
赵子轩发布了新的文献求助10
2秒前
2秒前
小怪兽发布了新的文献求助10
2秒前
3秒前
1+1发布了新的文献求助10
3秒前
田叫兽发布了新的文献求助10
4秒前
tesla发布了新的文献求助10
4秒前
细心的代天完成签到 ,获得积分10
5秒前
美满乌冬面完成签到,获得积分10
5秒前
5秒前
guajiguaji发布了新的文献求助10
6秒前
懵懂的听枫关注了科研通微信公众号
6秒前
euphoria发布了新的文献求助10
7秒前
7秒前
7秒前
圆圆发布了新的文献求助10
7秒前
oyc完成签到,获得积分10
7秒前
昔时旧日发布了新的文献求助10
8秒前
NexusExplorer应助顺利的雨灵采纳,获得10
8秒前
KK完成签到,获得积分10
9秒前
完美冷安完成签到,获得积分10
9秒前
9秒前
外婆桥给外婆桥的求助进行了留言
9秒前
祖f完成签到 ,获得积分10
9秒前
kong完成签到 ,获得积分10
10秒前
10秒前
科研小白发布了新的文献求助10
10秒前
PG完成签到 ,获得积分10
11秒前
11秒前
李健应助小怪兽采纳,获得10
12秒前
Alex完成签到,获得积分20
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134421
求助须知:如何正确求助?哪些是违规求助? 2785363
关于积分的说明 7771655
捐赠科研通 2440968
什么是DOI,文献DOI怎么找? 1297647
科研通“疑难数据库(出版商)”最低求助积分说明 625023
版权声明 600812