材料科学
纳米材料
法拉第效率
电催化剂
还原(数学)
纳米技术
基质(水族馆)
兴奋剂
制作
平面的
晶界
窗口(计算)
光电子学
电极
电解质
电化学
计算机科学
化学
物理化学
冶金
微观结构
地质学
计算机图形学(图像)
操作系统
海洋学
病理
医学
替代医学
数学
几何学
作者
Qilong Wu,Chuangwei Liu,Xiaozhi Su,Qi Yang,Xiaotong Wu,Haiyuan Zou,Baihua Long,Xiaokun Fan,Yujia Liao,Lele Duan,Zewei Quan,Shuiping Luo
出处
期刊:ACS Nano
[American Chemical Society]
日期:2022-12-27
卷期号:17 (1): 402-410
被引量:21
标识
DOI:10.1021/acsnano.2c08768
摘要
High conversion efficiency over a wide operating potential window is important for the practical application of CO2 reduction electrocatalysis, yet that remains a huge challenge in differentiating the competing CO2 reduction and H2 evolution. Here we introduce point defects (Sn doping) and planar defects (grain boundary) into the Cu substrate. This multidimensional defect integration strategy guides the fabrication of highly diluted SnCu polycrystal, which exhibits high Faradaic efficiencies (>95%) toward CO2 electroreduction over an ultrawide potential window (ΔE = 1.3 V). The theoretical study indicates that the introduction of Sn doping and grain boundary synergistically provides an optimized electronic effect, which helps suppress H2 evolution and promotes the hydrogenation of *CO2.
科研通智能强力驱动
Strongly Powered by AbleSci AI