Cross-sectional proteomic expression in Parkinson's disease-related proteins in drug-naïve patients vs healthy controls with longitudinal clinical follow-up

横断面研究 蛋白质表达 医学 帕金森病 疾病 内科学 肿瘤科 毒品天真 生物信息学 心理学 神经科学 药品 病理 生物 遗传学 药理学 基因
作者
Ilham Y. Abdi,Michael Bartl,Mohammed Dakna,Houari Abdesselem,Nour K. Majbour,Claudia Trenkwalder,Omar El-Agnaf,Brit Mollenhauer
出处
期刊:Neurobiology of Disease [Elsevier BV]
卷期号:177: 105997-105997 被引量:17
标识
DOI:10.1016/j.nbd.2023.105997
摘要

There is an urgent need to find reliable and accessible blood-based biomarkers for early diagnosis of Parkinson's disease (PD) correlating with clinical symptoms and displaying predictive potential to improve future clinical trials. This led us to a conduct large-scale proteomics approach using an advanced high-throughput proteomics technology to create a proteomic profile for PD. Over 1300 proteins were measured in serum samples from a de novo Parkinson's (DeNoPa) cohort made up of 85 deep clinically phenotyped drug-naïve de novo PD patients and 93 matched healthy controls (HC) with longitudinal clinical follow-up available of up to 8 years. The analysis identified 73 differentially expressed proteins (DEPs) of which 14 proteins were confirmed as stable potential diagnostic markers using machine learning tools. Among the DEPs identified, eight proteins-ALCAM, contactin 1, CD36, DUS3, NEGR1, Notch1, TrkB, and BTK- significantly correlated with longitudinal clinical scores including motor and non-motor symptom scores, cognitive function and depression scales, indicating potential predictive values for progression in PD among various phenotypes. Known functions of these proteins and their possible relation to the pathophysiology or symptomatology of PD were discussed and presented with a particular emphasis on the potential biological mechanisms involved, such as cell adhesion, axonal guidance and neuroinflammation, and T-cell activation. In conclusion, with the use of advance multiplex proteomic technology, a blood-based protein signature profile was identified from serum samples of a well-characterized PD cohort capable of potentially differentiating PD from HC and predicting clinical disease progression of related motor and non-motor PD symptoms. We thereby highlight the need to validate and further investigate these markers in future prospective cohorts and assess their possible PD-related mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助科研通管家采纳,获得10
1秒前
逸之狐应助凶狠的惜海采纳,获得20
1秒前
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
棋士应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
小二郎应助猪猪hero采纳,获得10
3秒前
JamesPei应助木棉采纳,获得10
3秒前
科研小白121212完成签到,获得积分10
4秒前
可耐的寒松完成签到,获得积分10
7秒前
TARGET完成签到 ,获得积分10
7秒前
8秒前
凶狠的惜海完成签到,获得积分20
8秒前
Vyasa完成签到,获得积分10
9秒前
10秒前
ED应助HM采纳,获得10
11秒前
如意代秋发布了新的文献求助30
12秒前
阿飞完成签到,获得积分10
13秒前
雨的痕迹发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
Derek完成签到,获得积分0
15秒前
我爱学术完成签到 ,获得积分10
17秒前
追梦完成签到 ,获得积分10
19秒前
zzzzz完成签到,获得积分10
19秒前
企鹅完成签到,获得积分10
19秒前
牛奶面包完成签到 ,获得积分10
20秒前
雨的痕迹完成签到,获得积分10
25秒前
梓林完成签到,获得积分10
26秒前
李清水完成签到,获得积分10
26秒前
anyilin发布了新的文献求助10
27秒前
gy发布了新的文献求助20
28秒前
28秒前
王海海完成签到 ,获得积分10
29秒前
pan完成签到,获得积分10
31秒前
随风旅鸟&帝骑哥完成签到,获得积分10
32秒前
34秒前
Shen完成签到,获得积分10
34秒前
梓林发布了新的文献求助10
35秒前
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954504
求助须知:如何正确求助?哪些是违规求助? 3500506
关于积分的说明 11099678
捐赠科研通 3230997
什么是DOI,文献DOI怎么找? 1786251
邀请新用户注册赠送积分活动 869884
科研通“疑难数据库(出版商)”最低求助积分说明 801717