Cross-sectional proteomic expression in Parkinson's disease-related proteins in drug-naïve patients vs healthy controls with longitudinal clinical follow-up

横断面研究 蛋白质表达 医学 帕金森病 疾病 内科学 肿瘤科 毒品天真 生物信息学 心理学 神经科学 药品 病理 生物 遗传学 药理学 基因
作者
Ilham Y. Abdi,Michael Bartl,Mohammed Dakna,Houari Abdesselem,Nour K. Majbour,Claudia Trenkwalder,Omar El-Agnaf,Brit Mollenhauer
出处
期刊:Neurobiology of Disease [Elsevier BV]
卷期号:177: 105997-105997 被引量:17
标识
DOI:10.1016/j.nbd.2023.105997
摘要

There is an urgent need to find reliable and accessible blood-based biomarkers for early diagnosis of Parkinson's disease (PD) correlating with clinical symptoms and displaying predictive potential to improve future clinical trials. This led us to a conduct large-scale proteomics approach using an advanced high-throughput proteomics technology to create a proteomic profile for PD. Over 1300 proteins were measured in serum samples from a de novo Parkinson's (DeNoPa) cohort made up of 85 deep clinically phenotyped drug-naïve de novo PD patients and 93 matched healthy controls (HC) with longitudinal clinical follow-up available of up to 8 years. The analysis identified 73 differentially expressed proteins (DEPs) of which 14 proteins were confirmed as stable potential diagnostic markers using machine learning tools. Among the DEPs identified, eight proteins-ALCAM, contactin 1, CD36, DUS3, NEGR1, Notch1, TrkB, and BTK- significantly correlated with longitudinal clinical scores including motor and non-motor symptom scores, cognitive function and depression scales, indicating potential predictive values for progression in PD among various phenotypes. Known functions of these proteins and their possible relation to the pathophysiology or symptomatology of PD were discussed and presented with a particular emphasis on the potential biological mechanisms involved, such as cell adhesion, axonal guidance and neuroinflammation, and T-cell activation. In conclusion, with the use of advance multiplex proteomic technology, a blood-based protein signature profile was identified from serum samples of a well-characterized PD cohort capable of potentially differentiating PD from HC and predicting clinical disease progression of related motor and non-motor PD symptoms. We thereby highlight the need to validate and further investigate these markers in future prospective cohorts and assess their possible PD-related mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卓奕雯完成签到,获得积分10
1秒前
1秒前
唯梦发布了新的文献求助10
1秒前
感谢zzzzz转发科研通微信,获得积分50
2秒前
wxy完成签到,获得积分10
3秒前
3秒前
4秒前
zjz1完成签到,获得积分10
4秒前
忧伤的渊思完成签到,获得积分10
5秒前
研友_VZG7GZ应助绝尘采纳,获得10
5秒前
Donlian完成签到,获得积分10
5秒前
cyy完成签到,获得积分20
6秒前
7秒前
7秒前
zjz1发布了新的文献求助10
8秒前
大模型应助怡然的魔镜采纳,获得10
8秒前
脑洞疼应助乐观紫采纳,获得10
8秒前
9秒前
10秒前
10秒前
11秒前
浮游应助独特的姝采纳,获得10
11秒前
yang发布了新的文献求助10
11秒前
12秒前
感谢星星转发科研通微信,获得积分50
12秒前
CCC驳回了珏晴应助
13秒前
13秒前
淡定小翠发布了新的文献求助10
13秒前
科研通AI5应助天天采纳,获得10
14秒前
英俊的铭应助谦让的振家采纳,获得10
14秒前
唯梦发布了新的文献求助10
15秒前
wanci应助tt采纳,获得10
16秒前
16秒前
lianhe完成签到,获得积分10
17秒前
17秒前
州州完成签到,获得积分10
18秒前
巫马尔槐发布了新的文献求助10
18秒前
19秒前
skxxxxxx发布了新的文献求助10
19秒前
汉堡包应助苗条小霸王采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934001
求助须知:如何正确求助?哪些是违规求助? 4202038
关于积分的说明 13055784
捐赠科研通 3976153
什么是DOI,文献DOI怎么找? 2178833
邀请新用户注册赠送积分活动 1195113
关于科研通互助平台的介绍 1106495