Cross-sectional proteomic expression in Parkinson's disease-related proteins in drug-naïve patients vs healthy controls with longitudinal clinical follow-up

横断面研究 蛋白质表达 医学 帕金森病 疾病 内科学 肿瘤科 毒品天真 生物信息学 心理学 神经科学 药品 病理 生物 遗传学 药理学 基因
作者
Ilham Y. Abdi,Michael Bartl,Mohammed Dakna,Houari Abdesselem,Nour K. Majbour,Claudia Trenkwalder,Omar El-Agnaf,Brit Mollenhauer
出处
期刊:Neurobiology of Disease [Elsevier]
卷期号:177: 105997-105997 被引量:16
标识
DOI:10.1016/j.nbd.2023.105997
摘要

There is an urgent need to find reliable and accessible blood-based biomarkers for early diagnosis of Parkinson's disease (PD) correlating with clinical symptoms and displaying predictive potential to improve future clinical trials. This led us to a conduct large-scale proteomics approach using an advanced high-throughput proteomics technology to create a proteomic profile for PD. Over 1300 proteins were measured in serum samples from a de novo Parkinson's (DeNoPa) cohort made up of 85 deep clinically phenotyped drug-naïve de novo PD patients and 93 matched healthy controls (HC) with longitudinal clinical follow-up available of up to 8 years. The analysis identified 73 differentially expressed proteins (DEPs) of which 14 proteins were confirmed as stable potential diagnostic markers using machine learning tools. Among the DEPs identified, eight proteins-ALCAM, contactin 1, CD36, DUS3, NEGR1, Notch1, TrkB, and BTK- significantly correlated with longitudinal clinical scores including motor and non-motor symptom scores, cognitive function and depression scales, indicating potential predictive values for progression in PD among various phenotypes. Known functions of these proteins and their possible relation to the pathophysiology or symptomatology of PD were discussed and presented with a particular emphasis on the potential biological mechanisms involved, such as cell adhesion, axonal guidance and neuroinflammation, and T-cell activation. In conclusion, with the use of advance multiplex proteomic technology, a blood-based protein signature profile was identified from serum samples of a well-characterized PD cohort capable of potentially differentiating PD from HC and predicting clinical disease progression of related motor and non-motor PD symptoms. We thereby highlight the need to validate and further investigate these markers in future prospective cohorts and assess their possible PD-related mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绘梨衣发布了新的文献求助10
刚刚
刚刚
1秒前
淡定紫菱发布了新的文献求助10
2秒前
李繁蕊发布了新的文献求助10
4秒前
万能图书馆应助愉快寄真采纳,获得10
4秒前
Rrr发布了新的文献求助10
4秒前
5秒前
5秒前
高兴藏花发布了新的文献求助10
5秒前
6秒前
顾闭月发布了新的文献求助10
8秒前
励志小薛完成签到,获得积分20
9秒前
doudou完成签到,获得积分10
9秒前
10秒前
Ting完成签到,获得积分10
11秒前
高兴藏花完成签到 ,获得积分20
11秒前
健忘的沛蓝完成签到 ,获得积分10
11秒前
clear发布了新的文献求助10
12秒前
12秒前
感动傀斗完成签到,获得积分10
12秒前
眼睛大的小鸽子完成签到 ,获得积分10
12秒前
hu完成签到,获得积分10
12秒前
科研通AI5应助顺顺采纳,获得10
12秒前
思源应助shengChen采纳,获得10
13秒前
宁静致远发布了新的文献求助10
14秒前
zhenpeng8888完成签到 ,获得积分10
14秒前
霜序初四完成签到 ,获得积分10
14秒前
15秒前
爆米花应助青木蓝采纳,获得10
15秒前
顾矜应助frank采纳,获得10
16秒前
heavennew完成签到,获得积分10
16秒前
充电宝应助绘梨衣采纳,获得10
17秒前
华仔应助励志小薛采纳,获得10
17秒前
17秒前
17秒前
单薄新烟发布了新的文献求助10
18秒前
18秒前
桐桐应助小王采纳,获得10
18秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794