Model predictive path tracking control for automated road vehicles: A review

模型预测控制 汽车工业 弹道 路径(计算) 控制(管理) 计算机科学 跟踪(教育) 执行机构 控制工程 工程类 人工智能 物理 航空航天工程 教育学 程序设计语言 心理学 天文
作者
Pietro Stano,Umberto Montanaro,Davide Tavernini,Manuela Tufo,Giovanni Fiengo,L. Novella,Aldo Sorniotti
出处
期刊:Annual Reviews in Control [Elsevier BV]
卷期号:55: 194-236 被引量:44
标识
DOI:10.1016/j.arcontrol.2022.11.001
摘要

Thanks to their road safety potential, automated vehicles are rapidly becoming a reality. In the last decade, automated driving has been the focus of intensive automotive engineering research, with the support of industry and governmental organisations. In automated driving systems, the path tracking layer defines the actuator commands to follow the reference path and speed profile. Model predictive control (MPC) is widely used for trajectory tracking because of its capability of managing multi-variable problems, and systematically considering constraints on states and control actions, as well as accounting for the expected future behaviour of the system. Despite the very large number of publications of the last few years, the literature lacks a comprehensive and updated survey on MPC for path tracking. To cover the gap, this literature review deals with the research conducted from 2015 until 2021 on model predictive path tracking control. Firstly, the survey highlights the significance of MPC in the recent path tracking control literature, with respect to alternative control structures. After classifying the different typologies of MPC for path tracking control, the adopted prediction models are critically analysed, together with typical optimal control problem formulations. This is followed by a summary of the most relevant results, which provides practical design indications, e.g., in terms of selection of prediction and control horizons. Finally, the most recent development trends are analysed, together with likely areas of further investigations, and the main conclusions are drawn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
葛博完成签到,获得积分10
1秒前
摩卡摩卡完成签到,获得积分10
1秒前
2秒前
在水一方应助张张采纳,获得10
2秒前
2秒前
Xiaokang发布了新的文献求助10
3秒前
3秒前
3秒前
不想看文献完成签到,获得积分10
3秒前
Zachary发布了新的文献求助10
4秒前
笨笨千青发布了新的文献求助10
4秒前
5秒前
充电宝应助仁和远采纳,获得10
5秒前
俭朴依白发布了新的文献求助10
5秒前
6秒前
Violet发布了新的文献求助10
6秒前
大街完成签到,获得积分10
6秒前
在水一方发布了新的文献求助10
6秒前
7秒前
hecarli完成签到,获得积分10
7秒前
wen完成签到 ,获得积分10
7秒前
曲沛萍发布了新的文献求助10
8秒前
8秒前
幽默白亦发布了新的文献求助30
9秒前
爆米花应助圈圈采纳,获得10
9秒前
活在当下发布了新的文献求助10
9秒前
9秒前
可爱的函函应助ahhwww采纳,获得10
9秒前
9秒前
繁荣的忆文完成签到,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
喔喔哦完成签到,获得积分10
12秒前
Ava应助小蚯蚓采纳,获得10
12秒前
控制小弟给控制小弟的求助进行了留言
12秒前
我是老大应助tracer采纳,获得10
12秒前
晴天发布了新的文献求助10
12秒前
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661892
求助须知:如何正确求助?哪些是违规求助? 3222763
关于积分的说明 9748303
捐赠科研通 2932492
什么是DOI,文献DOI怎么找? 1605689
邀请新用户注册赠送积分活动 758058
科研通“疑难数据库(出版商)”最低求助积分说明 734647