亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Newton-Raphson-based optimizer: A new population-based metaheuristic algorithm for continuous optimization problems

计算机科学 局部最优 水准点(测量) 数学优化 强化学习 算法 趋同(经济学) 收敛速度 牛顿法 元启发式 人口 人工智能 数学 钥匙(锁) 非线性系统 地理 物理 经济 人口学 社会学 量子力学 经济增长 计算机安全 大地测量学
作者
R. Sowmya,M. Premkumar,Pradeep Jangir
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:128: 107532-107532 被引量:320
标识
DOI:10.1016/j.engappai.2023.107532
摘要

The Newton-Raphson-Based Optimizer (NRBO), a new metaheuristic algorithm, is suggested and developed in this paper. The NRBO is inspired by Newton-Raphson's approach, and it explores the entire search process using two rules: the Newton-Raphson Search Rule (NRSR) and the Trap Avoidance Operator (TAO) and a few groups of matrices to explore the best results further. The NRSR uses a Newton-Raphson method to improve the exploration ability of NRBO and increase the convergence rate to reach improved search space positions. The TAO helps the NRBO to avoid the local optima trap. The performance of NRBO was assessed using 64 benchmark numerical functions, including 23 standard benchmarks, 29 CEC2017 constrained benchmarks, and 12 CEC2022 benchmarks. In addition, the NRBO was employed to optimize 12 CEC2020 real-world constrained engineering optimization problems. The proposed NRBO was compared to seven state-of-the-art optimization algorithms, and the findings showed that the NRBO produced promising results due to its features, such as high exploration and exploitation balance, high convergence rate, and effective avoidance of local optima capabilities. In addition, the NRBO also validated on challenging wireless communication problem called the internet of vehicle problem, and the NRBO was able to find the optimal path for data transmission. Also, the performance of NRBO in training the deep reinforcement learning agents is also studied by considering the mountain car problem. The obtained results also proved the NRBO's excellent performance in handling challenging real-world engineering problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
4秒前
舒服的觅夏完成签到,获得积分10
8秒前
9秒前
赘婿应助shinn采纳,获得10
17秒前
阿里完成签到,获得积分10
19秒前
1111关注了科研通微信公众号
21秒前
22秒前
动听的涵山完成签到,获得积分10
24秒前
思源应助郴欧尼采纳,获得10
24秒前
耕云钓月发布了新的文献求助10
26秒前
长安宁完成签到 ,获得积分10
27秒前
28秒前
33秒前
赘婿应助耕云钓月采纳,获得10
35秒前
shinn发布了新的文献求助10
36秒前
Ava应助shinn采纳,获得10
41秒前
42秒前
43秒前
53秒前
shinn发布了新的文献求助10
59秒前
小智完成签到,获得积分10
59秒前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
小智发布了新的文献求助10
1分钟前
耕云钓月发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
然463完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
夜夜景发布了新的文献求助10
1分钟前
1分钟前
美美发布了新的文献求助10
1分钟前
李爱国应助shinn采纳,获得10
1分钟前
忆修发布了新的文献求助30
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772534
求助须知:如何正确求助?哪些是违规求助? 5599698
关于积分的说明 15429759
捐赠科研通 4905497
什么是DOI,文献DOI怎么找? 2639436
邀请新用户注册赠送积分活动 1587360
关于科研通互助平台的介绍 1542247