Newton-Raphson-based optimizer: A new population-based metaheuristic algorithm for continuous optimization problems

计算机科学 局部最优 水准点(测量) 数学优化 强化学习 算法 趋同(经济学) 收敛速度 牛顿法 元启发式 人口 人工智能 数学 钥匙(锁) 非线性系统 地理 物理 经济 人口学 社会学 量子力学 经济增长 计算机安全 大地测量学
作者
R. Sowmya,M. Premkumar,Pradeep Jangir
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:128: 107532-107532 被引量:37
标识
DOI:10.1016/j.engappai.2023.107532
摘要

The Newton-Raphson-Based Optimizer (NRBO), a new metaheuristic algorithm, is suggested and developed in this paper. The NRBO is inspired by Newton-Raphson's approach, and it explores the entire search process using two rules: the Newton-Raphson Search Rule (NRSR) and the Trap Avoidance Operator (TAO) and a few groups of matrices to explore the best results further. The NRSR uses a Newton-Raphson method to improve the exploration ability of NRBO and increase the convergence rate to reach improved search space positions. The TAO helps the NRBO to avoid the local optima trap. The performance of NRBO was assessed using 64 benchmark numerical functions, including 23 standard benchmarks, 29 CEC2017 constrained benchmarks, and 12 CEC2022 benchmarks. In addition, the NRBO was employed to optimize 12 CEC2020 real-world constrained engineering optimization problems. The proposed NRBO was compared to seven state-of-the-art optimization algorithms, and the findings showed that the NRBO produced promising results due to its features, such as high exploration and exploitation balance, high convergence rate, and effective avoidance of local optima capabilities. In addition, the NRBO also validated on challenging wireless communication problem called the internet of vehicle problem, and the NRBO was able to find the optimal path for data transmission. Also, the performance of NRBO in training the deep reinforcement learning agents is also studied by considering the mountain car problem. The obtained results also proved the NRBO's excellent performance in handling challenging real-world engineering problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qcy1025发布了新的文献求助10
1秒前
2秒前
丰富广缘完成签到 ,获得积分10
2秒前
3秒前
白白发布了新的文献求助20
3秒前
3秒前
4秒前
4秒前
守培发布了新的文献求助10
4秒前
4秒前
从容飞阳完成签到,获得积分10
5秒前
5秒前
愉快的定帮完成签到,获得积分10
5秒前
sunflower发布了新的文献求助10
5秒前
顾矜应助棉花糖采纳,获得30
6秒前
罗C完成签到,获得积分10
7秒前
7秒前
Ashy发布了新的文献求助10
7秒前
8秒前
科研通AI2S应助qcy1025采纳,获得10
8秒前
depter完成签到,获得积分10
9秒前
10秒前
10秒前
英俊的铭应助11223344采纳,获得10
10秒前
13秒前
maroto完成签到 ,获得积分10
13秒前
嘘唏发布了新的文献求助20
14秒前
14秒前
15秒前
辣比小欣发布了新的文献求助10
16秒前
16秒前
爱学习的小花生完成签到,获得积分10
19秒前
科目三应助小胡同学采纳,获得10
19秒前
搜集达人应助小胡同学采纳,获得10
19秒前
科研通AI2S应助小胡同学采纳,获得10
19秒前
领导范儿应助Astro采纳,获得10
20秒前
initialyyy完成签到,获得积分10
20秒前
棉花糖发布了新的文献求助30
21秒前
11223344发布了新的文献求助10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145589
求助须知:如何正确求助?哪些是违规求助? 2797005
关于积分的说明 7822454
捐赠科研通 2453273
什么是DOI,文献DOI怎么找? 1305573
科研通“疑难数据库(出版商)”最低求助积分说明 627514
版权声明 601464