Newton-Raphson-based optimizer: A new population-based metaheuristic algorithm for continuous optimization problems

计算机科学 局部最优 水准点(测量) 数学优化 强化学习 算法 趋同(经济学) 收敛速度 牛顿法 元启发式 人口 人工智能 数学 钥匙(锁) 非线性系统 地理 物理 经济 人口学 社会学 量子力学 经济增长 计算机安全 大地测量学
作者
R. Sowmya,M. Premkumar,Pradeep Jangir
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:128: 107532-107532 被引量:231
标识
DOI:10.1016/j.engappai.2023.107532
摘要

The Newton-Raphson-Based Optimizer (NRBO), a new metaheuristic algorithm, is suggested and developed in this paper. The NRBO is inspired by Newton-Raphson's approach, and it explores the entire search process using two rules: the Newton-Raphson Search Rule (NRSR) and the Trap Avoidance Operator (TAO) and a few groups of matrices to explore the best results further. The NRSR uses a Newton-Raphson method to improve the exploration ability of NRBO and increase the convergence rate to reach improved search space positions. The TAO helps the NRBO to avoid the local optima trap. The performance of NRBO was assessed using 64 benchmark numerical functions, including 23 standard benchmarks, 29 CEC2017 constrained benchmarks, and 12 CEC2022 benchmarks. In addition, the NRBO was employed to optimize 12 CEC2020 real-world constrained engineering optimization problems. The proposed NRBO was compared to seven state-of-the-art optimization algorithms, and the findings showed that the NRBO produced promising results due to its features, such as high exploration and exploitation balance, high convergence rate, and effective avoidance of local optima capabilities. In addition, the NRBO also validated on challenging wireless communication problem called the internet of vehicle problem, and the NRBO was able to find the optimal path for data transmission. Also, the performance of NRBO in training the deep reinforcement learning agents is also studied by considering the mountain car problem. The obtained results also proved the NRBO's excellent performance in handling challenging real-world engineering problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助LOTUS采纳,获得10
1秒前
研友_ZGD5K8发布了新的文献求助30
1秒前
dr1nk完成签到,获得积分10
1秒前
1秒前
liuzhou完成签到,获得积分10
1秒前
2秒前
hyr完成签到 ,获得积分10
2秒前
务实思烟发布了新的文献求助10
2秒前
浮游应助guozizi采纳,获得10
3秒前
3秒前
3秒前
3秒前
whatever应助小马哥采纳,获得20
3秒前
无花果应助研友_Good Hope采纳,获得10
4秒前
4秒前
彭于晏应助liuzhou采纳,获得10
4秒前
qinyuynip发布了新的文献求助10
4秒前
4秒前
lin完成签到,获得积分10
5秒前
苗条的小肥羊完成签到,获得积分10
5秒前
领导范儿应助JJ采纳,获得10
6秒前
甜甜若冰发布了新的文献求助10
7秒前
orixero应助雾里看花采纳,获得10
7秒前
8秒前
红芍完成签到,获得积分10
8秒前
zz发布了新的文献求助10
8秒前
8秒前
广州队发布了新的文献求助10
10秒前
拼搏的璇完成签到 ,获得积分10
10秒前
酷波er应助务实思烟采纳,获得10
10秒前
10秒前
shuoshuo发布了新的文献求助10
10秒前
科研通AI6应助晚风摇曳采纳,获得10
10秒前
bluekids完成签到,获得积分10
11秒前
11秒前
脑洞疼应助可爱花瓣采纳,获得10
13秒前
Akim应助科研虫儿采纳,获得10
13秒前
危机的煎蛋完成签到 ,获得积分10
14秒前
imchenyin完成签到,获得积分10
14秒前
浮游应助boyue采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4959983
求助须知:如何正确求助?哪些是违规求助? 4220536
关于积分的说明 13143223
捐赠科研通 4004417
什么是DOI,文献DOI怎么找? 2191353
邀请新用户注册赠送积分活动 1205645
关于科研通互助平台的介绍 1116915