已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Newton-Raphson-based optimizer: A new population-based metaheuristic algorithm for continuous optimization problems

计算机科学 局部最优 水准点(测量) 数学优化 强化学习 算法 趋同(经济学) 收敛速度 牛顿法 元启发式 人口 人工智能 数学 钥匙(锁) 非线性系统 地理 物理 经济 人口学 社会学 量子力学 经济增长 计算机安全 大地测量学
作者
R. Sowmya,M. Premkumar,Pradeep Jangir
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:128: 107532-107532 被引量:231
标识
DOI:10.1016/j.engappai.2023.107532
摘要

The Newton-Raphson-Based Optimizer (NRBO), a new metaheuristic algorithm, is suggested and developed in this paper. The NRBO is inspired by Newton-Raphson's approach, and it explores the entire search process using two rules: the Newton-Raphson Search Rule (NRSR) and the Trap Avoidance Operator (TAO) and a few groups of matrices to explore the best results further. The NRSR uses a Newton-Raphson method to improve the exploration ability of NRBO and increase the convergence rate to reach improved search space positions. The TAO helps the NRBO to avoid the local optima trap. The performance of NRBO was assessed using 64 benchmark numerical functions, including 23 standard benchmarks, 29 CEC2017 constrained benchmarks, and 12 CEC2022 benchmarks. In addition, the NRBO was employed to optimize 12 CEC2020 real-world constrained engineering optimization problems. The proposed NRBO was compared to seven state-of-the-art optimization algorithms, and the findings showed that the NRBO produced promising results due to its features, such as high exploration and exploitation balance, high convergence rate, and effective avoidance of local optima capabilities. In addition, the NRBO also validated on challenging wireless communication problem called the internet of vehicle problem, and the NRBO was able to find the optimal path for data transmission. Also, the performance of NRBO in training the deep reinforcement learning agents is also studied by considering the mountain car problem. The obtained results also proved the NRBO's excellent performance in handling challenging real-world engineering problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
须眉交白完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
傲娇的小松鼠完成签到 ,获得积分10
2秒前
YYY发布了新的文献求助10
4秒前
hnx1005完成签到 ,获得积分10
5秒前
Ttttsyu发布了新的文献求助10
5秒前
奥特曼发布了新的文献求助10
5秒前
研友_LXjdOZ发布了新的文献求助20
5秒前
6秒前
RC发布了新的文献求助10
6秒前
完美世界应助yu采纳,获得10
6秒前
欢喜烧鹅发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
听宇完成签到,获得积分20
7秒前
惕守应助不信人间有白头采纳,获得10
7秒前
8秒前
Jojo发布了新的文献求助10
9秒前
悬铃木发布了新的文献求助10
10秒前
WWW发布了新的文献求助10
11秒前
科研通AI6应助橘猫123456采纳,获得10
11秒前
现代的雪枫完成签到,获得积分10
11秒前
张凌发布了新的文献求助10
11秒前
黄震洋完成签到,获得积分10
12秒前
leslie应助gqz采纳,获得20
13秒前
瓶子君152完成签到,获得积分10
15秒前
紫菜发布了新的文献求助10
15秒前
香蕉觅云应助yunshui采纳,获得10
16秒前
SciGPT应助Jojo采纳,获得10
17秒前
乐乐应助hulian采纳,获得10
20秒前
Abra发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
柠檬树完成签到,获得积分10
22秒前
wanci应助欢喜烧鹅采纳,获得10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590041
求助须知:如何正确求助?哪些是违规求助? 4674484
关于积分的说明 14794065
捐赠科研通 4629905
什么是DOI,文献DOI怎么找? 2532488
邀请新用户注册赠送积分活动 1501195
关于科研通互助平台的介绍 1468558