亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A survey of recent methods for addressing AI fairness and bias in biomedicine

借记 生物医学 计算机科学 领域(数学分析) 数据科学 人工智能 机器学习 心理学 数学分析 遗传学 数学 生物 认知科学
作者
Yifan Yang,Mingquan Lin,Han Zhao,Yifan Peng,Furong Huang,Zhiyong Lu
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:154: 104646-104646 被引量:3
标识
DOI:10.1016/j.jbi.2024.104646
摘要

Artificial intelligence (AI) systems have the potential to revolutionize clinical practices, including improving diagnostic accuracy and surgical decision-making, while also reducing costs and manpower. However, it is important to recognize that these systems may perpetuate social inequities or demonstrate biases, such as those based on race or gender. Such biases can occur before, during, or after the development of AI models, making it critical to understand and address potential biases to enable the accurate and reliable application of AI models in clinical settings. To mitigate bias concerns during model development, we surveyed recent publications on different debiasing methods in the fields of biomedical natural language processing (NLP) or computer vision (CV). Then we discussed the methods that have been applied in the biomedical domain to address bias. We performed our literature search on PubMed, ACM digital library, and IEEE Xplore of relevant articles published between January 2018 and December 2023 using multiple combinations of keywords. We then filtered the result of 10,041 articles automatically with loose constraints, and manually inspected the abstracts of the remaining 890 articles to identify the 55 articles included in this review. Additional articles in the references are also included in this review. We discuss each method and compare its strengths and weaknesses. Finally, we review other potential methods from the general domain that could be applied to biomedicine to address bias and improve fairness.The bias of AIs in biomedicine can originate from multiple sources. Existing debiasing methods that focus on algorithms can be categorized into distributional or algorithmic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
11秒前
12秒前
jia发布了新的文献求助10
16秒前
25秒前
harrywoo发布了新的文献求助10
30秒前
CodeCraft应助zh采纳,获得10
39秒前
41秒前
harrywoo完成签到,获得积分10
51秒前
56秒前
1分钟前
1分钟前
1分钟前
铁臂阿童木完成签到,获得积分10
1分钟前
11122333发布了新的文献求助10
1分钟前
1分钟前
Nan发布了新的文献求助10
1分钟前
1分钟前
Yoanna_UTHSC应助科研通管家采纳,获得10
1分钟前
1分钟前
zh发布了新的文献求助10
1分钟前
2分钟前
zh完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Jing完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
zyzy发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
duan123456发布了新的文献求助10
3分钟前
1128完成签到,获得积分10
3分钟前
3分钟前
3分钟前
11122333完成签到,获得积分10
3分钟前
duan123456完成签到,获得积分10
3分钟前
优秀醉易发布了新的文献求助10
3分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3341826
求助须知:如何正确求助?哪些是违规求助? 2969199
关于积分的说明 8637597
捐赠科研通 2648889
什么是DOI,文献DOI怎么找? 1450384
科研通“疑难数据库(出版商)”最低求助积分说明 671902
邀请新用户注册赠送积分活动 660966