Smart polarization and spectroscopic holography for real-time microplastics identification

全息术 计算机科学 人工智能 分类器(UML) 极化(电化学) 微塑料 光学 子空间拓扑 支持向量机 荧光各向异性 光谱学 模式识别(心理学) 材料科学 生物系统 物理 化学 荧光 物理化学 环境化学 生物 量子力学
作者
Yanmin Zhu,Yuxing Li,Jianqing Huang,Edmund Y. Lam
标识
DOI:10.1038/s44172-024-00178-4
摘要

Abstract Optical microscopy technologies as prominent imaging methods can offer rapid, non-destructive, non-invasive detection, quantification, and characterization of tiny particles. However, optical systems generally incorporate spectroscopy and chromatography for precise material determination, which are usually time-consuming and labor-intensive. Here, we design a polarization and spectroscopic holography to automatically analyze the molecular structure and composition, namely smart polarization and spectroscopic holography (SPLASH). This smart approach improves the evaluation performance by integrating multi-dimensional features, thereby enabling highly accurate and efficient identification. It simultaneously captures the polarization states-related, holographic, and texture features as spectroscopy, without the physical implementation of a spectroscopic system. By leveraging a Stokes polarization mask (SPM), SPLASH achieves simultaneous imaging of four polarization states. Its effectiveness has been demonstrated in the application of microplastics (MP) identification. With machine learning methods, such as ensemble subspace discriminant classifier, k-nearest neighbors classifier, and support vector machine, SPLASH depicts MPs with anisotropy, interference fringes, refractive index, and morphological characteristics and performs explicit discrimination with over 0.8 in value of area under the curve and less than 0.05 variance. This technique is a promising tool for addressing the increasing public concerning issues in MP pollution assessment, MP source identification, and long-term water pollution monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
优雅的流沙完成签到 ,获得积分10
1秒前
猫的海完成签到,获得积分10
1秒前
1秒前
Eason Liu完成签到,获得积分0
2秒前
Wendy1204完成签到,获得积分20
2秒前
Hello应助654采纳,获得10
2秒前
咩咩羊完成签到,获得积分10
2秒前
6秒前
lianqing完成签到,获得积分10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
7秒前
RC_Wang应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
hh应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得30
7秒前
7秒前
Leif应助科研通管家采纳,获得20
7秒前
7秒前
8秒前
8秒前
9秒前
9秒前
忘羡222发布了新的文献求助20
10秒前
丰富猕猴桃完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
JamesPei应助咿咿呀呀采纳,获得10
11秒前
www完成签到,获得积分10
11秒前
科研通AI2S应助Jenny采纳,获得10
12秒前
limin完成签到,获得积分10
13秒前
13秒前
风格完成签到,获得积分10
14秒前
情怀应助专心搞学术采纳,获得20
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824