锂(药物)
离子
三元运算
协调数
电导率
导线
碘化锂
六方晶系
化学
离子运输机
碘化物
化学物理
无机化学
结晶学
材料科学
物理化学
计算机科学
有机化学
医学
电极
电解质
复合材料
程序设计语言
内分泌学
作者
Guopeng Han,Andrij Vasylenko,Luke M. Daniels,Christopher M. Collins,Lucia Corti,Ruiyong Chen,Hongjun Niu,Troy D. Manning,Dmytro Antypov,Matthew S. Dyer,Jungwoo Lim,Marco Zanella,Manel Sonni,Mounib Bahri,Hongil Jo,Yun Dang,Craig M. Robertson,Frédéric Blanc,Laurence J. Hardwick,Nigel D. Browning,John B. Claridge,Matthew J. Rosseinsky
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2024-02-15
卷期号:383 (6684): 739-745
被引量:13
标识
DOI:10.1126/science.adh5115
摘要
Fast cation transport in solids underpins energy storage. Materials design has focused on structures that can define transport pathways with minimal cation coordination change, restricting attention to a small part of chemical space. Motivated by the greater structural diversity of binary intermetallics than that of the metallic elements, we used two anions to build a pathway for three-dimensional superionic lithium ion conductivity that exploits multiple cation coordination environments. Li 7 Si 2 S 7 I is a pure lithium ion conductor created by an ordering of sulphide and iodide that combines elements of hexagonal and cubic close-packing analogously to the structure of NiZr. The resulting diverse network of lithium positions with distinct geometries and anion coordination chemistries affords low barriers to transport, opening a large structural space for high cation conductivity.
科研通智能强力驱动
Strongly Powered by AbleSci AI