CGO-Ensemble: Chaos Game Optimization Algorithm-Based Fusion of Deep Neural Networks for Accurate Mpox Detection

计算机科学 水准点(测量) 杠杆(统计) 集成学习 集合预报 人工智能 机器学习 算法 数据挖掘 大地测量学 地理
作者
Sohaib Asif,Ming Zhao,Yangfan Li,Fengxiao Tang,Yusen Zhu
出处
期刊:Neural Networks [Elsevier]
卷期号:: 106183-106183 被引量:6
标识
DOI:10.1016/j.neunet.2024.106183
摘要

The rising global incidence of human Mpox cases necessitates prompt and accurate identification for effective disease control. Previous studies have predominantly delved into traditional ensemble methods for detection, we introduce a novel approach by leveraging a metaheuristic-based ensemble framework. In this research, we present an innovative CGO-Ensemble framework designed to elevate the accuracy of detecting Mpox infection in patients. Initially, we employ five transfer learning base models that integrate feature integration layers and residual blocks. These components play a crucial role in capturing significant features from the skin images, thereby enhancing the models' efficacy. In the next step, we employ a weighted averaging scheme to consolidate predictions generated by distinct models. To achieve the optimal allocation of weights for each base model in the ensemble process, we leverage the Chaos Game Optimization (CGO) algorithm. This strategic weight assignment enhances classification outcomes considerably, surpassing the performance of randomly assigned weights. Implementing this approach yields notably enhanced prediction accuracy compared to using individual models. We evaluate the effectiveness of our proposed approach through comprehensive experiments conducted on two widely recognized benchmark datasets: the Mpox Skin Lesion Dataset (MSLD) and the Mpox Skin Image Dataset (MSID). To gain insights into the decision-making process of the base models, we have performed Gradient Class Activation Mapping (Grad-CAM) analysis. The experimental results showcase the outstanding performance of the CGO-ensemble, achieving an impressive accuracy of 100% on MSLD and 94.16% on MSID. Our approach significantly outperforms other state-of-the-art optimization algorithms, traditional ensemble methods, and existing techniques in the context of Mpox detection on these datasets. These findings underscore the effectiveness and superiority of the CGO-Ensemble in accurately identifying Mpox cases, highlighting its potential in disease detection and classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
狐狐完成签到,获得积分10
1秒前
春夏秋冬发布了新的文献求助10
2秒前
如意的乐天完成签到,获得积分10
2秒前
2秒前
终陌发布了新的文献求助10
3秒前
科研通AI2S应助xiaozhou采纳,获得10
3秒前
4秒前
shiyang2014完成签到,获得积分10
4秒前
6秒前
要长高了完成签到,获得积分10
6秒前
Cynthia完成签到,获得积分10
6秒前
6秒前
6秒前
Renee应助话家采纳,获得10
7秒前
7秒前
水月发布了新的文献求助10
8秒前
9秒前
英姑应助任性的皮卡丘采纳,获得10
9秒前
9秒前
风再起时发布了新的文献求助10
10秒前
10秒前
楠木南完成签到,获得积分10
10秒前
10秒前
哭泣的幼蓉完成签到 ,获得积分10
11秒前
情怀应助Dr-张显华采纳,获得10
11秒前
哈哈哈发布了新的文献求助10
11秒前
12秒前
小猪跳水完成签到,获得积分20
12秒前
Cody发布了新的文献求助10
12秒前
酷炫翠桃发布了新的文献求助30
12秒前
老王完成签到,获得积分10
12秒前
云中完成签到,获得积分10
12秒前
dreamon给dreamon的求助进行了留言
12秒前
不挑食的Marcophages完成签到,获得积分10
13秒前
青梅憔悴关注了科研通微信公众号
15秒前
爱笑的宝马完成签到,获得积分10
15秒前
camera完成签到,获得积分20
16秒前
稳赚赚完成签到,获得积分10
17秒前
慕青应助GK采纳,获得10
17秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160558
求助须知:如何正确求助?哪些是违规求助? 2811730
关于积分的说明 7893251
捐赠科研通 2470605
什么是DOI,文献DOI怎么找? 1315658
科研通“疑难数据库(出版商)”最低求助积分说明 630920
版权声明 602042