Use of Temporally Validated Machine Learning Models To Predict Outcomes of Percutaneous Nephrolithotomy Using Data from the British Association of Urological Surgeons Percutaneous Nephrolithotomy Audit

医学 经皮肾镜取石术 逻辑回归 接收机工作特性 经皮 外科 内科学
作者
Robert Geraghty,Anshul Thakur,Sarah Howles,William Finch,Sarah Fowler,Alistair Rogers,Seshadri Sriprasad,Daron Smith,Andrew Dickinson,Zara Gall,Bhaskar K. Somani
出处
期刊:European urology focus [Elsevier]
被引量:1
标识
DOI:10.1016/j.euf.2024.01.011
摘要

Machine learning (ML) is a subset of artificial intelligence that uses data to build algorithms to predict specific outcomes. Few ML studies have examined percutaneous nephrolithotomy (PCNL) outcomes. Our objective was to build, streamline, temporally validate, and use ML models for prediction of PCNL outcomes (intensive care admission, postoperative infection, transfusion, adjuvant treatment, postoperative complications, visceral injury, and stone-free status at follow-up) using a comprehensive national database (British Association of Urological Surgeons PCNL).This was an ML study using data from a prospective national database. Extreme gradient boosting (XGB), deep neural network (DNN), and logistic regression (LR) models were built for each outcome of interest using complete cases only, imputed, and oversampled and imputed/oversampled data sets. All validation was performed with complete cases only. Temporal validation was performed with 2019 data only. A second round used a composite of the most important 11 variables in each model to build the final model for inclusion in the shiny application. We report statistics for prognostic accuracy.The database contains 12 810 patients. The final variables included were age, Charlson comorbidity index, preoperative haemoglobin, Guy's stone score, stone location, size of outer sheath, preoperative midstream urine result, primary puncture site, preoperative dimercapto-succinic acid scan, stone size, and image guidance (https://endourology.shinyapps.io/PCNL_Demographics/). The areas under the receiver operating characteristic curve was >0.6 in all cases.This is the largest ML study on PCNL outcomes to date. The models are temporally valid and therefore can be implemented in clinical practice for patient-specific risk profiling. Further work will be conducted to externally validate the models.We applied artificial intelligence to data for patients who underwent a keyhole surgery to remove kidney stones and developed a model to predict outcomes for this procedure. Doctors could use this tool to advise patients about their risk of complications and the outcomes they can expect after this surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
维多利亚完成签到,获得积分10
1秒前
知非发布了新的文献求助10
2秒前
4秒前
鲤鱼灵槐发布了新的文献求助50
4秒前
笨笨忘幽发布了新的文献求助10
5秒前
虞美人完成签到,获得积分10
6秒前
7秒前
8秒前
酶没美镁发布了新的文献求助10
8秒前
宋泽艺完成签到 ,获得积分10
8秒前
夜话风陵杜完成签到 ,获得积分0
9秒前
wcw完成签到 ,获得积分10
9秒前
12秒前
浮名半生发布了新的文献求助10
13秒前
13秒前
qkl-zyl完成签到,获得积分10
13秒前
虞美人发布了新的文献求助10
14秒前
共享精神应助Cc采纳,获得10
14秒前
woollen2022完成签到,获得积分10
14秒前
洁净的黑米完成签到,获得积分10
15秒前
16秒前
dudu完成签到 ,获得积分10
18秒前
20秒前
21秒前
菜大炮发布了新的文献求助10
23秒前
大脸猫完成签到 ,获得积分10
23秒前
慕青应助重要的白秋采纳,获得10
24秒前
Jasper应助allrubbish采纳,获得10
24秒前
25秒前
瀚森发布了新的文献求助10
26秒前
今天又来搬砖啦完成签到,获得积分10
26秒前
27秒前
ryan1300完成签到 ,获得积分10
28秒前
29秒前
Tangyartie完成签到 ,获得积分10
30秒前
清逸之风完成签到 ,获得积分10
30秒前
Cc发布了新的文献求助10
31秒前
马东完成签到,获得积分10
31秒前
单薄碧灵完成签到 ,获得积分10
33秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165255
求助须知:如何正确求助?哪些是违规求助? 2816291
关于积分的说明 7912153
捐赠科研通 2475954
什么是DOI,文献DOI怎么找? 1318458
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388