Use of Temporally Validated Machine Learning Models To Predict Outcomes of Percutaneous Nephrolithotomy Using Data from the British Association of Urological Surgeons Percutaneous Nephrolithotomy Audit

医学 经皮肾镜取石术 逻辑回归 接收机工作特性 经皮 外科 内科学
作者
Robert Geraghty,Anshul Thakur,Sarah Howles,William Finch,Sarah Fowler,Alistair Rogers,Seshadri Sriprasad,Daron Smith,Andrew Dickinson,Zara Gall,Bhaskar K. Somani
出处
期刊:European urology focus [Elsevier]
被引量:1
标识
DOI:10.1016/j.euf.2024.01.011
摘要

Machine learning (ML) is a subset of artificial intelligence that uses data to build algorithms to predict specific outcomes. Few ML studies have examined percutaneous nephrolithotomy (PCNL) outcomes. Our objective was to build, streamline, temporally validate, and use ML models for prediction of PCNL outcomes (intensive care admission, postoperative infection, transfusion, adjuvant treatment, postoperative complications, visceral injury, and stone-free status at follow-up) using a comprehensive national database (British Association of Urological Surgeons PCNL).This was an ML study using data from a prospective national database. Extreme gradient boosting (XGB), deep neural network (DNN), and logistic regression (LR) models were built for each outcome of interest using complete cases only, imputed, and oversampled and imputed/oversampled data sets. All validation was performed with complete cases only. Temporal validation was performed with 2019 data only. A second round used a composite of the most important 11 variables in each model to build the final model for inclusion in the shiny application. We report statistics for prognostic accuracy.The database contains 12 810 patients. The final variables included were age, Charlson comorbidity index, preoperative haemoglobin, Guy's stone score, stone location, size of outer sheath, preoperative midstream urine result, primary puncture site, preoperative dimercapto-succinic acid scan, stone size, and image guidance (https://endourology.shinyapps.io/PCNL_Demographics/). The areas under the receiver operating characteristic curve was >0.6 in all cases.This is the largest ML study on PCNL outcomes to date. The models are temporally valid and therefore can be implemented in clinical practice for patient-specific risk profiling. Further work will be conducted to externally validate the models.We applied artificial intelligence to data for patients who underwent a keyhole surgery to remove kidney stones and developed a model to predict outcomes for this procedure. Doctors could use this tool to advise patients about their risk of complications and the outcomes they can expect after this surgery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗砖家发布了新的文献求助10
刚刚
跳动的蓝精灵完成签到,获得积分10
1秒前
mzhmhy完成签到,获得积分10
1秒前
满意的烨磊完成签到,获得积分10
1秒前
KDVBHGJDFHGAV完成签到,获得积分10
2秒前
2秒前
风趣的苑博完成签到,获得积分10
2秒前
Luvvv发布了新的文献求助10
3秒前
开始游戏55完成签到,获得积分10
3秒前
科研通AI6应助科研通管家采纳,获得30
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得30
3秒前
科目三应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
子车茗应助科研通管家采纳,获得30
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
打打应助科研通管家采纳,获得10
4秒前
Stella应助科研通管家采纳,获得10
4秒前
lmy完成签到 ,获得积分10
5秒前
飞飞鱼完成签到 ,获得积分10
5秒前
5秒前
zaemon完成签到,获得积分20
6秒前
Jane2024完成签到,获得积分10
7秒前
木木完成签到,获得积分10
7秒前
zizi完成签到,获得积分10
7秒前
老马发布了新的文献求助10
8秒前
IceyCNZ发布了新的文献求助20
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600096
求助须知:如何正确求助?哪些是违规求助? 4685809
关于积分的说明 14839646
捐赠科研通 4674865
什么是DOI,文献DOI怎么找? 2538486
邀请新用户注册赠送积分活动 1505659
关于科研通互助平台的介绍 1471109