已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Use of Temporally Validated Machine Learning Models To Predict Outcomes of Percutaneous Nephrolithotomy Using Data from the British Association of Urological Surgeons Percutaneous Nephrolithotomy Audit

医学 经皮肾镜取石术 逻辑回归 接收机工作特性 经皮 外科 内科学
作者
Robert Geraghty,Anshul Thakur,Sarah Howles,William Finch,Sarah Fowler,Alistair Rogers,Seshadri Sriprasad,Daron Smith,Andrew Dickinson,Zara Gall,Bhaskar K. Somani
出处
期刊:European urology focus [Elsevier]
被引量:1
标识
DOI:10.1016/j.euf.2024.01.011
摘要

Machine learning (ML) is a subset of artificial intelligence that uses data to build algorithms to predict specific outcomes. Few ML studies have examined percutaneous nephrolithotomy (PCNL) outcomes. Our objective was to build, streamline, temporally validate, and use ML models for prediction of PCNL outcomes (intensive care admission, postoperative infection, transfusion, adjuvant treatment, postoperative complications, visceral injury, and stone-free status at follow-up) using a comprehensive national database (British Association of Urological Surgeons PCNL).This was an ML study using data from a prospective national database. Extreme gradient boosting (XGB), deep neural network (DNN), and logistic regression (LR) models were built for each outcome of interest using complete cases only, imputed, and oversampled and imputed/oversampled data sets. All validation was performed with complete cases only. Temporal validation was performed with 2019 data only. A second round used a composite of the most important 11 variables in each model to build the final model for inclusion in the shiny application. We report statistics for prognostic accuracy.The database contains 12 810 patients. The final variables included were age, Charlson comorbidity index, preoperative haemoglobin, Guy's stone score, stone location, size of outer sheath, preoperative midstream urine result, primary puncture site, preoperative dimercapto-succinic acid scan, stone size, and image guidance (https://endourology.shinyapps.io/PCNL_Demographics/). The areas under the receiver operating characteristic curve was >0.6 in all cases.This is the largest ML study on PCNL outcomes to date. The models are temporally valid and therefore can be implemented in clinical practice for patient-specific risk profiling. Further work will be conducted to externally validate the models.We applied artificial intelligence to data for patients who underwent a keyhole surgery to remove kidney stones and developed a model to predict outcomes for this procedure. Doctors could use this tool to advise patients about their risk of complications and the outcomes they can expect after this surgery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王者归来完成签到,获得积分10
2秒前
2秒前
Cloud发布了新的文献求助10
5秒前
6秒前
7秒前
CodeCraft应助读书的时候采纳,获得10
7秒前
繁星长明应助科研通管家采纳,获得10
7秒前
繁星长明应助科研通管家采纳,获得10
7秒前
7秒前
大模型应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
大模型应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
8秒前
Momomo应助科研通管家采纳,获得10
8秒前
繁星长明应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
yyds应助科研通管家采纳,获得50
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
心灵美鑫完成签到 ,获得积分10
9秒前
跳跃发布了新的文献求助10
11秒前
12秒前
12秒前
阳光的灵竹完成签到,获得积分10
13秒前
自然的含蕾完成签到 ,获得积分10
14秒前
紫焰完成签到 ,获得积分10
15秒前
傲娇的曼香完成签到,获得积分10
17秒前
任性的棒棒糖完成签到,获得积分10
18秒前
跳跃完成签到,获得积分10
20秒前
20秒前
赏金猎人John_Wang完成签到,获得积分10
23秒前
Viiigo完成签到,获得积分10
26秒前
单薄的烧鹅完成签到,获得积分10
26秒前
孙仙女完成签到,获得积分20
30秒前
二三完成签到 ,获得积分10
31秒前
爱笑的书蝶完成签到 ,获得积分10
34秒前
田様应助隔壁家采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731373
求助须知:如何正确求助?哪些是违规求助? 5329767
关于积分的说明 15320909
捐赠科研通 4877444
什么是DOI,文献DOI怎么找? 2620313
邀请新用户注册赠送积分活动 1569588
关于科研通互助平台的介绍 1526075