已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Use of Temporally Validated Machine Learning Models To Predict Outcomes of Percutaneous Nephrolithotomy Using Data from the British Association of Urological Surgeons Percutaneous Nephrolithotomy Audit

医学 经皮肾镜取石术 逻辑回归 接收机工作特性 经皮 外科 内科学
作者
Robert Geraghty,Anshul Thakur,Sarah Howles,William Finch,Sarah Fowler,Alistair Rogers,Seshadri Sriprasad,Daron Smith,Andrew Dickinson,Zara Gall,Bhaskar K. Somani
出处
期刊:European urology focus [Elsevier]
被引量:1
标识
DOI:10.1016/j.euf.2024.01.011
摘要

Machine learning (ML) is a subset of artificial intelligence that uses data to build algorithms to predict specific outcomes. Few ML studies have examined percutaneous nephrolithotomy (PCNL) outcomes. Our objective was to build, streamline, temporally validate, and use ML models for prediction of PCNL outcomes (intensive care admission, postoperative infection, transfusion, adjuvant treatment, postoperative complications, visceral injury, and stone-free status at follow-up) using a comprehensive national database (British Association of Urological Surgeons PCNL).This was an ML study using data from a prospective national database. Extreme gradient boosting (XGB), deep neural network (DNN), and logistic regression (LR) models were built for each outcome of interest using complete cases only, imputed, and oversampled and imputed/oversampled data sets. All validation was performed with complete cases only. Temporal validation was performed with 2019 data only. A second round used a composite of the most important 11 variables in each model to build the final model for inclusion in the shiny application. We report statistics for prognostic accuracy.The database contains 12 810 patients. The final variables included were age, Charlson comorbidity index, preoperative haemoglobin, Guy's stone score, stone location, size of outer sheath, preoperative midstream urine result, primary puncture site, preoperative dimercapto-succinic acid scan, stone size, and image guidance (https://endourology.shinyapps.io/PCNL_Demographics/). The areas under the receiver operating characteristic curve was >0.6 in all cases.This is the largest ML study on PCNL outcomes to date. The models are temporally valid and therefore can be implemented in clinical practice for patient-specific risk profiling. Further work will be conducted to externally validate the models.We applied artificial intelligence to data for patients who underwent a keyhole surgery to remove kidney stones and developed a model to predict outcomes for this procedure. Doctors could use this tool to advise patients about their risk of complications and the outcomes they can expect after this surgery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
结实剑封完成签到,获得积分20
刚刚
1秒前
4秒前
结实剑封发布了新的文献求助10
5秒前
5秒前
NN完成签到 ,获得积分10
6秒前
yoonkk发布了新的文献求助10
8秒前
lin发布了新的文献求助30
9秒前
YuLu发布了新的文献求助10
10秒前
田小胖完成签到,获得积分10
12秒前
小菜一碟完成签到 ,获得积分10
14秒前
14秒前
ilihe应助sfwrbh采纳,获得10
15秒前
tleeny完成签到,获得积分20
15秒前
mm完成签到 ,获得积分10
16秒前
16秒前
zynn完成签到,获得积分10
19秒前
22秒前
22秒前
23秒前
23秒前
23秒前
23秒前
tuanheqi应助科研通管家采纳,获得150
23秒前
tuanheqi应助科研通管家采纳,获得150
23秒前
葡萄柚子应助科研通管家采纳,获得20
23秒前
大模型应助科研通管家采纳,获得30
23秒前
23秒前
24秒前
QingFeng完成签到 ,获得积分10
25秒前
25秒前
26秒前
一只小郭发布了新的文献求助10
27秒前
懒洋洋发布了新的文献求助10
28秒前
ilihe应助sfwrbh采纳,获得10
29秒前
29秒前
30秒前
子瑜刘完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
31秒前
SUMING完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5787648
求助须知:如何正确求助?哪些是违规求助? 5700511
关于积分的说明 15472366
捐赠科研通 4915991
什么是DOI,文献DOI怎么找? 2646045
邀请新用户注册赠送积分活动 1593763
关于科研通互助平台的介绍 1548031