已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Use of Temporally Validated Machine Learning Models To Predict Outcomes of Percutaneous Nephrolithotomy Using Data from the British Association of Urological Surgeons Percutaneous Nephrolithotomy Audit

医学 经皮肾镜取石术 逻辑回归 接收机工作特性 经皮 外科 内科学
作者
Robert Geraghty,Anshul Thakur,Sarah Howles,William Finch,Sarah Fowler,Alistair Rogers,Seshadri Sriprasad,Daron Smith,Andrew Dickinson,Zara Gall,Bhaskar K. Somani
出处
期刊:European urology focus [Elsevier BV]
被引量:1
标识
DOI:10.1016/j.euf.2024.01.011
摘要

Machine learning (ML) is a subset of artificial intelligence that uses data to build algorithms to predict specific outcomes. Few ML studies have examined percutaneous nephrolithotomy (PCNL) outcomes. Our objective was to build, streamline, temporally validate, and use ML models for prediction of PCNL outcomes (intensive care admission, postoperative infection, transfusion, adjuvant treatment, postoperative complications, visceral injury, and stone-free status at follow-up) using a comprehensive national database (British Association of Urological Surgeons PCNL).This was an ML study using data from a prospective national database. Extreme gradient boosting (XGB), deep neural network (DNN), and logistic regression (LR) models were built for each outcome of interest using complete cases only, imputed, and oversampled and imputed/oversampled data sets. All validation was performed with complete cases only. Temporal validation was performed with 2019 data only. A second round used a composite of the most important 11 variables in each model to build the final model for inclusion in the shiny application. We report statistics for prognostic accuracy.The database contains 12 810 patients. The final variables included were age, Charlson comorbidity index, preoperative haemoglobin, Guy's stone score, stone location, size of outer sheath, preoperative midstream urine result, primary puncture site, preoperative dimercapto-succinic acid scan, stone size, and image guidance (https://endourology.shinyapps.io/PCNL_Demographics/). The areas under the receiver operating characteristic curve was >0.6 in all cases.This is the largest ML study on PCNL outcomes to date. The models are temporally valid and therefore can be implemented in clinical practice for patient-specific risk profiling. Further work will be conducted to externally validate the models.We applied artificial intelligence to data for patients who underwent a keyhole surgery to remove kidney stones and developed a model to predict outcomes for this procedure. Doctors could use this tool to advise patients about their risk of complications and the outcomes they can expect after this surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
彼岸花开发布了新的文献求助10
2秒前
Nakacoke77完成签到,获得积分10
2秒前
轻松尔蝶完成签到 ,获得积分10
4秒前
科研通AI5应助Jay采纳,获得10
10秒前
丘比特应助Jay采纳,获得10
10秒前
yx_cheng应助Jay采纳,获得10
10秒前
13秒前
哈哈哈哈发布了新的文献求助10
17秒前
人间草木完成签到,获得积分10
26秒前
RHJ完成签到 ,获得积分10
32秒前
Skye完成签到 ,获得积分10
37秒前
40秒前
陶瓷小罐完成签到 ,获得积分10
42秒前
狂野的含烟完成签到 ,获得积分10
42秒前
nature发布了新的文献求助10
43秒前
Mingchun完成签到 ,获得积分10
44秒前
ele_yuki完成签到,获得积分10
46秒前
48秒前
烟花应助柠栀采纳,获得10
50秒前
在水一方应助三水采纳,获得10
53秒前
木槿完成签到,获得积分10
54秒前
郭娅楠完成签到 ,获得积分10
54秒前
yuyuyu发布了新的文献求助10
57秒前
半城微凉应助科研通管家采纳,获得10
59秒前
852应助科研通管家采纳,获得10
59秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
李爱国应助科研通管家采纳,获得10
59秒前
科研通AI5应助科研通管家采纳,获得10
59秒前
王梦豪发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
今后应助江洋大盗采纳,获得10
1分钟前
susu发布了新的文献求助10
1分钟前
ding应助李治稳采纳,获得10
1分钟前
深情断秋发布了新的文献求助10
1分钟前
huangy完成签到,获得积分10
1分钟前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976600
求助须知:如何正确求助?哪些是违规求助? 3520674
关于积分的说明 11204470
捐赠科研通 3257316
什么是DOI,文献DOI怎么找? 1798683
邀请新用户注册赠送积分活动 877861
科研通“疑难数据库(出版商)”最低求助积分说明 806595