亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine-learning-aided prediction and optimization of struvite recovery from synthetic wastewater

结晶 废水 鸟粪石 梯度升压 污水处理 响应面法 均方预测误差 随机森林 计算机科学 氮气 工艺优化 制浆造纸工业 机器学习 材料科学 环境科学 生物系统 化学 色谱法 工程类 环境工程 有机化学 冶金 生物
作者
Lijian Leng,Bingyan Kang,Donghai Xu,Krzysztof Kapusta,Ting Xiong,Zhengyong Xu,Liangliang Fan,Tonggui Liu,Haoyi Peng,Hailong Li
出处
期刊:Journal of water process engineering [Elsevier]
卷期号:58: 104896-104896 被引量:11
标识
DOI:10.1016/j.jwpe.2024.104896
摘要

Struvite recovery from wastewater is a promising direction for recovering phosphorus and nitrogen nutrients. However, traditional experiment-basis optimization of struvite crystallization conditions is time-consuming, labor-intensive, and limited to the number of variables. Machine learning (ML) was conducted here to help achieve favorable experimental struvite recovery from synthetic wastewater. Single-target and multi-target prediction of P_recovery and N_recovery using seven process parameters as inputs were performed by gradient boosting regression and random forest (RF) models. The RF models, with test R2 of 0.86–0.94 and RMSE of 5.48–10.17, outperformed the GBR ones for both single- and multi-target predictions. The effects of various process conditions on struvite crystallization were clarified by ML model interpretation. To obtain high phosphorus and nitrogen recoveries, the RF prediction model was used to optimize the crystallization conditions of struvite, which were then experimentally validated. The preferable experimental verification results, with relative errors for the ten optimum solutions' P_recovery and N_recovery being 0.18–4.67% and 0.12–7.32%, respectively, indicate the great potential of using ML to promote struvite formation for recovering P and N.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
18秒前
22秒前
26秒前
44秒前
汉堡包应助Developing_human采纳,获得10
50秒前
52秒前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
暴躁的奇异果完成签到,获得积分10
3分钟前
3分钟前
领导范儿应助Ming采纳,获得10
3分钟前
3分钟前
3分钟前
CodeCraft应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
George发布了新的文献求助10
4分钟前
4分钟前
Ming发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Enso完成签到 ,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
阿里给阿里的求助进行了留言
6分钟前
小透明发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664501
求助须知:如何正确求助?哪些是违规求助? 4863056
关于积分的说明 15107857
捐赠科研通 4823130
什么是DOI,文献DOI怎么找? 2581958
邀请新用户注册赠送积分活动 1536065
关于科研通互助平台的介绍 1494491