聚类分析
多目标优化
帕累托原理
计算机科学
数学优化
遗传算法
数学
人工智能
作者
Lianghao Li,Jianqing Lin,Cheng He,Linqiang Pan
标识
DOI:10.1016/j.asoc.2024.111341
摘要
In contrast to traditional benchmarks, multiobjective optimization problems (MOPs) encountered in practical applications often exhibit intricate variable interdependencies, giving rise to complex Pareto sets (PSs) characterized by rotated or nonlinear shapes. Simulated binary crossover (SBX), a widely used genetic operator for solving MOPs, experiences significant performance degradation when applied to MOPs with intricate PSs. The rotation-based SBX (RSBX) incorporates the rotational property into SBX to handle MOPs with linear but rotated PSs. Nevertheless, RSBX may encounter difficulties in solving MOPs with nonlinear PSs. In order to tackle this challenge, we propose a clustering-based mating restriction strategy to address MOPs with intricate PSs, and the proposed approach has been integrated with RSBX to formulate an algorithm named CRSBX. The clustering-based mating restriction strategy involves partitioning the parent population into approximately linearly distributed clusters, then RSBX is applied to each cluster for effective offspring generation. We empirically investigate the impact of the clustering algorithm and its associated parameters on CRSBX. Ablation studies are also conducted to examine the efficacy of the clustering-based mating restriction strategy. Additionally, we compare CRSBX with other representative algorithms on benchmark problems and real-world applications with intricate PSs. Comparison results highlight the promising performance of CRSBX in effectively addressing MOPs with intricate PSs.
科研通智能强力驱动
Strongly Powered by AbleSci AI