Clustering-based genetic offspring generation for solving multi-objective optimization problems with intricate Pareto sets

聚类分析 多目标优化 帕累托原理 计算机科学 数学优化 遗传算法 数学 人工智能
作者
Lianghao Li,Jianqing Lin,Cheng He,Linqiang Pan
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:154: 111341-111341 被引量:2
标识
DOI:10.1016/j.asoc.2024.111341
摘要

In contrast to traditional benchmarks, multiobjective optimization problems (MOPs) encountered in practical applications often exhibit intricate variable interdependencies, giving rise to complex Pareto sets (PSs) characterized by rotated or nonlinear shapes. Simulated binary crossover (SBX), a widely used genetic operator for solving MOPs, experiences significant performance degradation when applied to MOPs with intricate PSs. The rotation-based SBX (RSBX) incorporates the rotational property into SBX to handle MOPs with linear but rotated PSs. Nevertheless, RSBX may encounter difficulties in solving MOPs with nonlinear PSs. In order to tackle this challenge, we propose a clustering-based mating restriction strategy to address MOPs with intricate PSs, and the proposed approach has been integrated with RSBX to formulate an algorithm named CRSBX. The clustering-based mating restriction strategy involves partitioning the parent population into approximately linearly distributed clusters, then RSBX is applied to each cluster for effective offspring generation. We empirically investigate the impact of the clustering algorithm and its associated parameters on CRSBX. Ablation studies are also conducted to examine the efficacy of the clustering-based mating restriction strategy. Additionally, we compare CRSBX with other representative algorithms on benchmark problems and real-world applications with intricate PSs. Comparison results highlight the promising performance of CRSBX in effectively addressing MOPs with intricate PSs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助火鸡味锅巴采纳,获得10
刚刚
君君发布了新的文献求助10
刚刚
英俊的铭应助辰123采纳,获得10
1秒前
冷酷的柚子完成签到,获得积分20
1秒前
小波发布了新的文献求助10
2秒前
萝卜发布了新的文献求助10
3秒前
壮观采文完成签到,获得积分10
3秒前
言无间完成签到,获得积分10
4秒前
自信雅琴发布了新的文献求助10
4秒前
上官若男应助22采纳,获得10
5秒前
6秒前
ee发布了新的文献求助10
7秒前
7秒前
8秒前
wakkkkk完成签到,获得积分10
8秒前
9秒前
10秒前
雪花发布了新的文献求助20
11秒前
12秒前
宋宋发布了新的文献求助10
13秒前
honey发布了新的文献求助10
13秒前
end发布了新的文献求助10
13秒前
Gengar发布了新的文献求助10
14秒前
852应助GT采纳,获得10
14秒前
zyx174733完成签到,获得积分10
15秒前
16秒前
萝卜完成签到,获得积分10
16秒前
18秒前
19秒前
xin完成签到,获得积分10
19秒前
zyx174733发布了新的文献求助10
20秒前
nicole完成签到,获得积分10
20秒前
happy发布了新的文献求助10
22秒前
喵77发布了新的文献求助20
22秒前
couletian完成签到 ,获得积分10
22秒前
ee发布了新的文献求助10
25秒前
25秒前
研友_VZG7GZ应助雪花采纳,获得10
26秒前
安详的嵩完成签到,获得积分20
27秒前
Gengar发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998315
求助须知:如何正确求助?哪些是违规求助? 3537823
关于积分的说明 11272560
捐赠科研通 3276885
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883778
科研通“疑难数据库(出版商)”最低求助积分说明 810014