Biomass higher heating value prediction machine learning insights into ultimate, proximate, and structural analysis datasets

近邻 生物量(生态学) 价值(数学) 机器学习 计算机科学 人工智能 数据挖掘 化学 生态学 食品科学 生物
作者
Ivan Brandić,Neven Voća,Jerko Gunjača,Biljana Lončar,Nikola Bilandžija,Anamarija Peter,Jona Šurić,Lato Pezo
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:46 (1): 2842-2854 被引量:2
标识
DOI:10.1080/15567036.2024.2309303
摘要

In this study machine learning (ML) models have been employed to predict the higher heating value (HHV) of biomass by utilizing input variables derived from ultimate, proximate, and structural analyses. In total, 180 models were developed, with 124 utilizing ultimate analysis data, 28 based on proximate analysis, and 28 relying on structural analysis. Various ML techniques, including polynomial models (SOP), support vector machines (SVM), random forest regression (RFR), and artificial neural networks (ANN), were employed for analysis. The study found that ANN models, when "fed" with FC and VM data, provided considerable accuracy in prediction results, with the best results obtained with 2-12-1 architecture (R2 = 0.96). In addition, a separate model configuration that processed inputs on biomass constituents such as cellulose, lignin, and hemicellulose showed remarkable agreement with empirical data. Additional findings revealed that the models created using SOP (R2 = 0.95), SVM (R2 = 0.95), and RFR (R2 = 0.90) demonstrated minimal discrepancies when predicting HHV. This study provides significant insights into the investigation of biomass analysis techniques employing ML tools, paving the way for future research aimed at constructing a robust tool for HHV prediction. Subsequent models may explore integrating inputs from diverse analysis methods and leveraging advanced machine learning techniques to enhance accuracy further.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助kongbaige采纳,获得10
刚刚
邹万恶发布了新的文献求助10
刚刚
搞怪冷之完成签到 ,获得积分10
刚刚
swify339完成签到,获得积分10
1秒前
typhoon完成签到,获得积分10
1秒前
sugar完成签到,获得积分10
1秒前
lily完成签到,获得积分10
1秒前
自由寄柔完成签到,获得积分10
1秒前
2秒前
Zx_1993应助miao采纳,获得20
2秒前
欧阳蛋蛋鸡完成签到,获得积分10
2秒前
ZJPPPP发布了新的文献求助10
2秒前
cij123完成签到,获得积分10
2秒前
独特的忆彤完成签到 ,获得积分10
3秒前
mc关闭了mc文献求助
3秒前
leisure应助科研通管家采纳,获得10
3秒前
VDC应助科研通管家采纳,获得30
3秒前
liuaoo发布了新的文献求助10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
小青椒应助科研通管家采纳,获得10
4秒前
求助人员应助科研通管家采纳,获得10
4秒前
4秒前
大模型应助科研通管家采纳,获得10
4秒前
自由寄柔发布了新的文献求助30
4秒前
wills应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
Jasper应助蕾蕾大酱采纳,获得10
5秒前
李健的粉丝团团长应助周_采纳,获得10
5秒前
独特听芹完成签到,获得积分10
5秒前
Tan完成签到 ,获得积分10
5秒前
6秒前
7秒前
123发布了新的文献求助10
7秒前
华青ww完成签到,获得积分10
7秒前
王晓朋完成签到,获得积分10
7秒前
agd122完成签到,获得积分10
8秒前
8秒前
喝到几点完成签到,获得积分10
8秒前
英姑应助dd采纳,获得10
8秒前
邹万恶完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006