Biomass higher heating value prediction machine learning insights into ultimate, proximate, and structural analysis datasets

近邻 生物量(生态学) 价值(数学) 机器学习 计算机科学 人工智能 数据挖掘 化学 生态学 食品科学 生物
作者
Ivan Brandić,Neven Voća,Jerko Gunjača,Biljana Lončar,Nikola Bilandžija,Anamarija Peter,Jona Šurić,Lato Pezo
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:46 (1): 2842-2854 被引量:2
标识
DOI:10.1080/15567036.2024.2309303
摘要

In this study machine learning (ML) models have been employed to predict the higher heating value (HHV) of biomass by utilizing input variables derived from ultimate, proximate, and structural analyses. In total, 180 models were developed, with 124 utilizing ultimate analysis data, 28 based on proximate analysis, and 28 relying on structural analysis. Various ML techniques, including polynomial models (SOP), support vector machines (SVM), random forest regression (RFR), and artificial neural networks (ANN), were employed for analysis. The study found that ANN models, when "fed" with FC and VM data, provided considerable accuracy in prediction results, with the best results obtained with 2-12-1 architecture (R2 = 0.96). In addition, a separate model configuration that processed inputs on biomass constituents such as cellulose, lignin, and hemicellulose showed remarkable agreement with empirical data. Additional findings revealed that the models created using SOP (R2 = 0.95), SVM (R2 = 0.95), and RFR (R2 = 0.90) demonstrated minimal discrepancies when predicting HHV. This study provides significant insights into the investigation of biomass analysis techniques employing ML tools, paving the way for future research aimed at constructing a robust tool for HHV prediction. Subsequent models may explore integrating inputs from diverse analysis methods and leveraging advanced machine learning techniques to enhance accuracy further.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
燕儿发布了新的文献求助10
3秒前
你好晚安发布了新的文献求助10
4秒前
4秒前
kk发布了新的文献求助10
5秒前
7秒前
你好CDY完成签到,获得积分10
9秒前
10秒前
mount完成签到,获得积分10
10秒前
12秒前
2090完成签到,获得积分10
12秒前
w_yF发布了新的文献求助10
14秒前
我不是BOB发布了新的文献求助50
14秒前
传奇3应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
今后应助科研通管家采纳,获得10
15秒前
彭于晏应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
16秒前
16秒前
rachel03发布了新的文献求助10
16秒前
文献文献文献完成签到,获得积分0
16秒前
Manzia完成签到,获得积分10
17秒前
17秒前
17秒前
18秒前
不可以懒懒完成签到,获得积分10
18秒前
19秒前
20秒前
zhuzhu发布了新的文献求助10
20秒前
可爱的函函应助guoyunlong采纳,获得10
21秒前
22秒前
Mid发布了新的文献求助20
23秒前
23秒前
SHUAI完成签到,获得积分10
25秒前
Tina完成签到,获得积分10
25秒前
mcl应助一叶扁舟采纳,获得10
25秒前
kb发布了新的文献求助10
27秒前
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308488
求助须知:如何正确求助?哪些是违规求助? 2941822
关于积分的说明 8506015
捐赠科研通 2616798
什么是DOI,文献DOI怎么找? 1429796
科研通“疑难数据库(出版商)”最低求助积分说明 663919
邀请新用户注册赠送积分活动 649019