Biomass higher heating value prediction machine learning insights into ultimate, proximate, and structural analysis datasets

近邻 生物量(生态学) 价值(数学) 机器学习 计算机科学 人工智能 数据挖掘 化学 生态学 食品科学 生物
作者
Ivan Brandić,Neven Voća,Jerko Gunjača,Biljana Lončar,Nikola Bilandžija,Anamarija Peter,Jona Šurić,Lato Pezo
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Taylor & Francis]
卷期号:46 (1): 2842-2854 被引量:2
标识
DOI:10.1080/15567036.2024.2309303
摘要

In this study machine learning (ML) models have been employed to predict the higher heating value (HHV) of biomass by utilizing input variables derived from ultimate, proximate, and structural analyses. In total, 180 models were developed, with 124 utilizing ultimate analysis data, 28 based on proximate analysis, and 28 relying on structural analysis. Various ML techniques, including polynomial models (SOP), support vector machines (SVM), random forest regression (RFR), and artificial neural networks (ANN), were employed for analysis. The study found that ANN models, when "fed" with FC and VM data, provided considerable accuracy in prediction results, with the best results obtained with 2-12-1 architecture (R2 = 0.96). In addition, a separate model configuration that processed inputs on biomass constituents such as cellulose, lignin, and hemicellulose showed remarkable agreement with empirical data. Additional findings revealed that the models created using SOP (R2 = 0.95), SVM (R2 = 0.95), and RFR (R2 = 0.90) demonstrated minimal discrepancies when predicting HHV. This study provides significant insights into the investigation of biomass analysis techniques employing ML tools, paving the way for future research aimed at constructing a robust tool for HHV prediction. Subsequent models may explore integrating inputs from diverse analysis methods and leveraging advanced machine learning techniques to enhance accuracy further.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
mys完成签到,获得积分10
刚刚
241867825发布了新的文献求助10
刚刚
2秒前
2秒前
2秒前
KKKK完成签到,获得积分10
2秒前
2秒前
3秒前
伍六七完成签到,获得积分10
3秒前
大个应助巧克力圣诞采纳,获得10
3秒前
卢雨生发布了新的文献求助10
3秒前
kjikji发布了新的文献求助10
4秒前
三三椋椋发布了新的文献求助10
4秒前
张张发布了新的文献求助10
4秒前
吴大打完成签到,获得积分10
5秒前
Liuxinyiliu完成签到,获得积分10
5秒前
大个应助伊卡洛斯采纳,获得10
6秒前
吴彦祖发布了新的文献求助10
7秒前
美好的涑发布了新的文献求助10
7秒前
脑洞疼应助左丘傲菡采纳,获得10
7秒前
英俊的铭应助舒心初晴采纳,获得10
7秒前
7秒前
浮游应助席成风采纳,获得10
8秒前
年轻秀发布了新的文献求助10
8秒前
8秒前
武状元发布了新的文献求助10
8秒前
archieeee完成签到,获得积分10
9秒前
10秒前
18902319112关注了科研通微信公众号
10秒前
传奇3应助rat采纳,获得10
11秒前
wanci应助伏尾窗的猫采纳,获得30
11秒前
11秒前
王志涛发布了新的文献求助10
11秒前
soar完成签到 ,获得积分10
12秒前
AAA房地产小王完成签到,获得积分10
12秒前
聪慧的正豪应助哭泣青烟采纳,获得10
12秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940451
求助须知:如何正确求助?哪些是违规求助? 4206580
关于积分的说明 13074753
捐赠科研通 3985154
什么是DOI,文献DOI怎么找? 2182031
邀请新用户注册赠送积分活动 1197696
关于科研通互助平台的介绍 1110012