A radiomics and genomics-derived model for predicting metastasis and prognosis in colorectal cancer

结直肠癌 无线电技术 基因组学 医学 肿瘤科 转移 生物标志物 内科学 癌症 逐步回归 生物 基因组 基因 放射科 生物化学
作者
Xue Li,Meng Wu,Min Wu,Jie Liu,Song Li,Jiasi Wang,Jun Zhou,Shilin Li,Hang Yang,Jun Zhang,Xin‐Wu Cui,Zhenyu Liu,Fanxin Zeng
出处
期刊:Carcinogenesis [Oxford University Press]
卷期号:45 (3): 170-180
标识
DOI:10.1093/carcin/bgad098
摘要

Abstract Approximately 50% of colorectal cancer (CRC) patients would develop metastasis with poor prognosis, therefore, it is necessary to effectively predict metastasis in clinical treatment. In this study, we aimed to establish a machine-learning model for predicting metastasis in CRC patients by considering radiomics and transcriptomics simultaneously. Here, 1023 patients with CRC from three centers were collected and divided into five queues (Dazhou Central Hospital n = 517, Nanchong Central Hospital n = 120 and the Cancer Genome Atlas (TCGA) n = 386). A total of 854 radiomics features were extracted from tumor lesions on CT images, and 217 differentially expressed genes were obtained from non-metastasis and metastasis tumor tissues using RNA sequencing. Based on radiotranscriptomic (RT) analysis, a novel RT model was developed and verified through genetic algorithms (GA). Interleukin (IL)-26, a biomarker in RT model, was verified for its biological function in CRC metastasis. Furthermore, 15 radiomics variables were screened through stepwise regression, which was highly correlated with the IL26 expression level. Finally, a radiomics model (RA) was established by combining GA and stepwise regression analysis with radiomics features. The RA model exhibited favorable discriminatory ability and accuracy for metastasis prediction in two independent verification cohorts. We designed multicenter, multi-scale cohorts to construct and verify novel combined radiomics and genomics models for predicting metastasis in CRC. Overall, RT model and RA model might help clinicians in directing personalized diagnosis and therapeutic regimen selection for patients with CRC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
unique发布了新的文献求助10
1秒前
2秒前
彭于晏应助mzb采纳,获得10
2秒前
3秒前
yatou5651发布了新的文献求助30
3秒前
科研通AI2S应助内向秋寒采纳,获得10
3秒前
3秒前
小马一家发布了新的文献求助10
4秒前
4秒前
子车代芙完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
小麻瓜应助渣渣XM采纳,获得10
5秒前
7秒前
hhh发布了新的文献求助10
7秒前
冷傲初夏发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
加拿大一枝黄花完成签到,获得积分10
9秒前
丘比特应助Left采纳,获得10
10秒前
科学家发布了新的文献求助10
11秒前
鄂霸发布了新的文献求助30
11秒前
JacobCheng1完成签到,获得积分10
11秒前
万能图书馆应助秋子骞采纳,获得10
11秒前
哒哒哒宰发布了新的文献求助10
11秒前
壮观糖豆发布了新的文献求助10
11秒前
12秒前
14秒前
JacobCheng1发布了新的文献求助10
14秒前
15秒前
科研通AI2S应助yyyy采纳,获得10
16秒前
Fu完成签到 ,获得积分10
18秒前
hhh完成签到,获得积分10
19秒前
充电宝应助小马一家采纳,获得10
19秒前
JamesPei应助Ayuyu采纳,获得10
19秒前
体贴的颜完成签到,获得积分10
20秒前
香蕉绿草发布了新的文献求助10
21秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159555
求助须知:如何正确求助?哪些是违规求助? 2810543
关于积分的说明 7888660
捐赠科研通 2469574
什么是DOI,文献DOI怎么找? 1314953
科研通“疑难数据库(出版商)”最低求助积分说明 630722
版权声明 602012