A radiomics and genomics-derived model for predicting metastasis and prognosis in colorectal cancer

结直肠癌 无线电技术 基因组学 医学 肿瘤科 转移 生物标志物 内科学 癌症 逐步回归 生物 基因组 基因 放射科 生物化学
作者
Xue Li,Meng Wu,Min Wu,Jie Liu,Song Li,Jiasi Wang,Jun Zhou,Shilin Li,Hang Yang,Jun Zhang,Xin‐Wu Cui,Zhenyu Liu,Fanxin Zeng
出处
期刊:Carcinogenesis [Oxford University Press]
卷期号:45 (3): 170-180 被引量:5
标识
DOI:10.1093/carcin/bgad098
摘要

Abstract Approximately 50% of colorectal cancer (CRC) patients would develop metastasis with poor prognosis, therefore, it is necessary to effectively predict metastasis in clinical treatment. In this study, we aimed to establish a machine-learning model for predicting metastasis in CRC patients by considering radiomics and transcriptomics simultaneously. Here, 1023 patients with CRC from three centers were collected and divided into five queues (Dazhou Central Hospital n = 517, Nanchong Central Hospital n = 120 and the Cancer Genome Atlas (TCGA) n = 386). A total of 854 radiomics features were extracted from tumor lesions on CT images, and 217 differentially expressed genes were obtained from non-metastasis and metastasis tumor tissues using RNA sequencing. Based on radiotranscriptomic (RT) analysis, a novel RT model was developed and verified through genetic algorithms (GA). Interleukin (IL)-26, a biomarker in RT model, was verified for its biological function in CRC metastasis. Furthermore, 15 radiomics variables were screened through stepwise regression, which was highly correlated with the IL26 expression level. Finally, a radiomics model (RA) was established by combining GA and stepwise regression analysis with radiomics features. The RA model exhibited favorable discriminatory ability and accuracy for metastasis prediction in two independent verification cohorts. We designed multicenter, multi-scale cohorts to construct and verify novel combined radiomics and genomics models for predicting metastasis in CRC. Overall, RT model and RA model might help clinicians in directing personalized diagnosis and therapeutic regimen selection for patients with CRC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单身的外绣应助燕燕于飞采纳,获得10
刚刚
暴躁的信封完成签到,获得积分10
刚刚
lxl1996发布了新的文献求助10
1秒前
鞘皮完成签到,获得积分10
1秒前
亭语完成签到 ,获得积分10
3秒前
中和皇极发布了新的文献求助10
4秒前
xiuluo发布了新的文献求助10
5秒前
淡然从雪发布了新的文献求助20
5秒前
隐形曼青应助切克闹采纳,获得10
7秒前
8秒前
9秒前
科研助手6应助燕燕于飞采纳,获得10
9秒前
坚强的怜南完成签到,获得积分10
9秒前
9秒前
yu应助啾一口香菜采纳,获得10
9秒前
虚拟的秋寒完成签到,获得积分10
9秒前
10秒前
11秒前
S-Lab Sonic完成签到,获得积分10
11秒前
YY发布了新的文献求助10
12秒前
12秒前
13秒前
hug发布了新的文献求助100
13秒前
科研通AI5应助李喜喜采纳,获得10
14秒前
14秒前
小凉完成签到 ,获得积分10
15秒前
当归参子发布了新的文献求助10
16秒前
17秒前
Orange应助甘宁采纳,获得10
17秒前
18秒前
18秒前
宓函完成签到,获得积分10
19秒前
汎影发布了新的文献求助10
20秒前
九个太阳完成签到,获得积分10
20秒前
温酒随行发布了新的文献求助10
20秒前
田様应助jgs采纳,获得10
21秒前
深情安青应助orger采纳,获得30
22秒前
SciGPT应助燕燕于飞采纳,获得10
22秒前
23秒前
肉哥发布了新的文献求助10
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785657
求助须知:如何正确求助?哪些是违规求助? 3331079
关于积分的说明 10250021
捐赠科研通 3046482
什么是DOI,文献DOI怎么找? 1672111
邀请新用户注册赠送积分活动 800991
科研通“疑难数据库(出版商)”最低求助积分说明 759907