姜黄素
抗氧化剂
阿布茨
淀粉
DPPH
活性包装
食品包装
抗坏血酸
化学
活性氧
化学工程
核化学
食品科学
有机化学
工程类
生物化学
作者
Xiquan Li,Xinhua Zhang,Juan Lv,Xiuling Zhang,Yingying Li,Xiao-Feng Han,Wentao Zhang
标识
DOI:10.1016/j.ijbiomac.2024.130464
摘要
In current study, curcumin-loaded bioactive nanocomplexes (Cur NCs) (2 %, 5 %, 8 %, and 11 %) were used to prepare corn starch (CS)-based composite films (CS-Cur NCs). Fourier-transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy revealed that Cur NCs were uniformly dispersed in the polymer matrix via physical interaction. Moreover, the mechanical, gas barrier, hydrophobicity, optical, and thermal properties and the antioxidant activity of composite films were potentially improved with the addition of Cur NCs. Subsequently, CS-based film with 11 % Cur NCs exhibited high antioxidant activity (the scavenging rates of DPPH and ABTS are 50.07 % ± 0.82 % and 65.26 % ± 1.60 %, respectively) and was used for packaging blueberries. Compared with the control, the CS-Cur NCs packaging treatment effectively improved the appearance and nutrition of blueberries, and maintained the high activity of several antioxidant enzymes. Furthermore, CS-Cur NCs packaging treatment significantly improved the ascorbic acid (AsA) and glutathione (GSH) levels, thus regulating the AsA-GSH cycle system and suppressing the accumulation of reactive oxygen species (ROS). In summary, the CS-Cur NCs packaging could effectively conserve the postharvest quality of blueberries by improving antioxidant enzyme activity and suppressing excessive accumulation of ROS, which contributes to the development of bioactive packaging and provides novel insights into the preservation of blueberries. This work demonstrates that the development of active packaging is promising to absorb the oxidative radicals from food, and protect the food from inherent and external factors, thus enhancing the quality, security, and shelf-life of the food during storage.
科研通智能强力驱动
Strongly Powered by AbleSci AI