Advancing Breast Cancer Diagnosis with Machine Learning: Exploring Data Balancing, Feature Selection, and Bayesian Optimization

超参数 乳腺癌 机器学习 特征选择 计算机科学 人工智能 贝叶斯优化 特征(语言学) 选择(遗传算法) 数据集 癌症 数据挖掘 医学 内科学 语言学 哲学
作者
Abd Allah Aouragh,Mohamed Bahaj
标识
DOI:10.1109/cloudtech58737.2023.10366058
摘要

Breast cancer represents the preeminent widespread type of cancer worldwide among women. The World Health Organization estimates that an annual total of 2.3 million new breast cancer cases are recorded. Also, breast cancer stands as the top cause of cancer mortality in the female population, claiming more than 685,000 lives by 2020. In response to the alarming spread of breast cancer and its significant impact on women's health, it has become imperative to develop innovative techniques and methods for early detection, accurate diagnosis, and effective treatment. In this perspective, the current paper suggests a comparison of several machine learning methods enhanced with data balancing, feature selection, and hyperparameter-tuning Bayesian search strategies. The dataset employed is an unbalanced set of 569 entries comprising 31 medical features associated with breast cancer. With machine learning, data balancing, feature selection, and hyperparameter optimization methods, we can make significant strides in improving the accuracy of breast cancer classification and prediction techniques. All models in our study demonstrated promising performances, exceeding 98% across all classification metrics for some of them, which will improve breast cancer diagnosis and treatment systems and offer healthcare professionals more practical resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助浅辰采纳,获得10
刚刚
赘婿应助冷静的小虾米采纳,获得10
刚刚
丰知然应助ruirui采纳,获得10
3秒前
完美世界应助ruirui采纳,获得10
3秒前
4秒前
明亮的冬天应助su采纳,获得10
4秒前
RUOXI发布了新的文献求助10
6秒前
和平星完成签到 ,获得积分10
6秒前
RAY完成签到,获得积分10
6秒前
脑洞疼应助kk采纳,获得10
7秒前
10秒前
科研通AI2S应助fang采纳,获得10
12秒前
冷静的小虾米完成签到,获得积分10
12秒前
12秒前
RUOXI完成签到,获得积分10
12秒前
12秒前
NanNan626发布了新的文献求助10
14秒前
14秒前
周乘风完成签到,获得积分10
15秒前
15秒前
可爱的函函应助FENG采纳,获得30
16秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
17秒前
cocolu应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
坦率芝麻应助科研通管家采纳,获得10
17秒前
8R60d8应助科研通管家采纳,获得10
17秒前
8R60d8应助科研通管家采纳,获得10
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
QDU应助科研通管家采纳,获得20
18秒前
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
8R60d8应助科研通管家采纳,获得10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314019
求助须知:如何正确求助?哪些是违规求助? 2946434
关于积分的说明 8530073
捐赠科研通 2622079
什么是DOI,文献DOI怎么找? 1434341
科研通“疑难数据库(出版商)”最低求助积分说明 665205
邀请新用户注册赠送积分活动 650792