佩多:嘘
荧光
猝灭(荧光)
光诱导电子转移
共价键
检出限
共价有机骨架
光化学
材料科学
化学
量子产额
分析化学(期刊)
纳米技术
电子转移
有机化学
色谱法
光学
物理
图层(电子)
作者
Deshuai Zhen,Shaoqi Zhang,Aofeng Yang,Le Li,Qingyun Cai,Craig A. Grimes,Yu Liu
标识
DOI:10.1016/j.ijbiomac.2023.129104
摘要
Simple and accurate in vivo monitoring of Fe3+ is essential for gaining a better understanding of its role in physiological and pathological processes. A novel fluorescent probe was synthesized via in situ solid-state polymerization of 3,4-ethylenedioxythiophene (PEDOT) in the pore channels of a covalent organic framework (COF). The PEDOT@COF fluorescent probe exhibited an absolute quantum yield (QY) 3 times higher than COF. In the presence of Fe3+ the PEDOT@COF 475 nm fluorescence emission, 365 nm excitation, is quenched within 180 s. Fluorescence quenching is linear with Fe3+ in the concentration range of 0–960 μM, with a detection limit of 0.82 μM. The fluorescence quenching mechanism was attributed to inner filter effect (IEF), photoinduced electron transfer (PET) and static quenching (SQE) between PEDOT@COF and Fe3+. A paper strip-based detector was designed to facilitate practical applicability, and the PEDOT@COF probe successfully applied to fluorescence imaging of Fe3+ levels in vivo. This work details a tool of great promise for enabling detailed investigations into the role of Fe3+ in physiological and pathological diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI