拓扑优化
拓扑(电路)
组分(热力学)
投影(关系代数)
几何形状
最小边界框
计算机科学
网络拓扑
互连
数学优化
计算科学
有限元法
工程类
算法
数学
几何学
结构工程
物理
计算机视觉
热力学
电气工程
图像(数学)
操作系统
计算机网络
作者
Waheed B. Bello,Satya R. T. Peddada,Anurag Bhattacharyya,Lawrence Zeidner,James T. Allison,Kai A. James
出处
期刊:Journal of Mechanical Design
日期:2024-01-12
卷期号:146 (8)
被引量:1
摘要
Abstract This article presents a novel three-dimensional topology optimization framework developed for 3D spatial packaging of interconnected systems using a geometric projection method (GPM). The proposed gradient-based topology optimization method simultaneously optimizes the locations and orientations of system components (or devices) and lengths, diameters, and trajectories of interconnects to reduce the overall system volume within the prescribed 3D design domain. The optimization is subject to geometric and physics-based constraints dictated by various system specifications, suited for a wide range of transportation (aerospace or automotive), heating, ventilation, air-conditioning, and refrigeration, and other complex system applications. The system components and interconnects are represented using 3D parametric shapes such as cubes, cuboids, and cylinders. These objects are then projected onto a three-dimensional finite element mesh using the geometric projection method. Sensitivities are calculated for the objective function (bounding box volume) with various geometric and physics-based (thermal and hydraulic) constraints. Several case studies were performed with different component counts, interconnection topologies, and system boundary conditions and are presented to exhibit the capabilities of the proposed 3D multi-physics spatial packaging optimization framework.
科研通智能强力驱动
Strongly Powered by AbleSci AI