清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Early prediction of dementia using fMRI data with a graph convolutional network approach

痴呆 支持向量机 图形 计算机科学 人工智能 认知障碍 模式识别(心理学) 功能磁共振成像 机器学习 认知 疾病 心理学 医学 神经科学 病理 理论计算机科学
作者
Shuning Han,Zhe Sun,Kanhao Zhao,Feng Duan,César F. Caiafa,Yu Zhang,Jordi Solé‐Casals
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (1): 016013-016013 被引量:11
标识
DOI:10.1088/1741-2552/ad1e22
摘要

Abstract Objective . Alzheimer’s disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to detect patients in the mild cognitive impairment (MCI) stage or even earlier, enabling effective interventions to prevent further deterioration of dementia. This study focuses on the early prediction of dementia utilizing Magnetic Resonance Imaging (MRI) data, using the proposed Graph Convolutional Networks (GCNs). Approach . Specifically, we developed a functional connectivity (FC) based GCN framework for binary classifications using resting-state fMRI data. We explored different types and processing methods of FC and evaluated the performance on the OASIS-3 dataset. We developed the GCN model for two different purposes: (1) MCI diagnosis: classifying MCI from normal controls (NCs); and (2) dementia risk prediction: classifying NCs from subjects who have the potential for developing MCI but have not been clinically diagnosed as MCI. Main results . The results of the experiments revealed several important findings: First, the proposed GCN outperformed both the baseline GCN and Support Vector Machine (SVM). It achieved the best average accuracy of 80.3% (11.7% higher than the baseline GCN and 23.5% higher than SVM) and the highest accuracy of 91.2%. Secondly, the GCN framework with (absolute) individual FC performed slightly better than that with global FC generally. However, GCN using global graphs with appropriate connectivity can achieve equivalent or superior performance to individual graphs in some cases, which highlights the significance of suitable connectivity for achieving performance. Additionally, the results indicate that the self-network connectivity of specific brain network regions (such as default mode network, visual network, ventral attention network and somatomotor network) may play a more significant role in GCN classification. Significance . Overall, this study offers valuable insights into the application of GCNs in brain analysis and early diagnosis of dementia. This contributes significantly to the understanding of MCI and has substantial potential for clinical applications in early diagnosis and intervention for dementia and other neurodegenerative diseases. Our code for GCN implementation is available at: https://github.com/Shuning-Han/FC-based-GCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CHEN完成签到 ,获得积分10
4秒前
两个榴莲完成签到,获得积分0
17秒前
xun完成签到,获得积分20
2分钟前
名侦探柯基完成签到 ,获得积分10
2分钟前
2分钟前
西西娃儿发布了新的文献求助100
2分钟前
Yamila完成签到,获得积分10
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
3分钟前
陈杰发布了新的文献求助10
4分钟前
桃子爱学习完成签到,获得积分10
4分钟前
搜集达人应助Forizix采纳,获得10
4分钟前
zwy109完成签到 ,获得积分10
5分钟前
阿俊完成签到 ,获得积分10
5分钟前
Yini应助科研通管家采纳,获得150
5分钟前
Jasper应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
Yini应助科研通管家采纳,获得20
5分钟前
研友_ngqoE8完成签到,获得积分10
5分钟前
5分钟前
Iuu发布了新的文献求助10
5分钟前
Iuu完成签到,获得积分20
6分钟前
CipherSage应助lilink采纳,获得30
6分钟前
6分钟前
Jasper应助有人采纳,获得200
7分钟前
木昆完成签到 ,获得积分10
7分钟前
Yini应助科研通管家采纳,获得150
7分钟前
7分钟前
一二三四发布了新的文献求助10
7分钟前
8分钟前
lilink发布了新的文献求助30
8分钟前
8分钟前
肃肃其羽完成签到 ,获得积分10
8分钟前
一二三四完成签到,获得积分10
9分钟前
Mona给Mona的求助进行了留言
9分钟前
orixero应助GIM采纳,获得10
9分钟前
MchemG应助科研通管家采纳,获得20
9分钟前
MchemG应助科研通管家采纳,获得10
9分钟前
9分钟前
Forizix完成签到,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292892
求助须知:如何正确求助?哪些是违规求助? 4443287
关于积分的说明 13831021
捐赠科研通 4326759
什么是DOI,文献DOI怎么找? 2375099
邀请新用户注册赠送积分活动 1370412
关于科研通互助平台的介绍 1335007