Early prediction of dementia using fMRI data with a graph convolutional network approach

痴呆 支持向量机 图形 计算机科学 人工智能 认知障碍 模式识别(心理学) 功能磁共振成像 机器学习 认知 疾病 心理学 医学 神经科学 病理 理论计算机科学
作者
Shuning Han,Zhe Sun,Kanhao Zhao,Feng Duan,César F. Caiafa,Yu Zhang,Jordi Solé‐Casals
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (1): 016013-016013 被引量:11
标识
DOI:10.1088/1741-2552/ad1e22
摘要

Abstract Objective . Alzheimer’s disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to detect patients in the mild cognitive impairment (MCI) stage or even earlier, enabling effective interventions to prevent further deterioration of dementia. This study focuses on the early prediction of dementia utilizing Magnetic Resonance Imaging (MRI) data, using the proposed Graph Convolutional Networks (GCNs). Approach . Specifically, we developed a functional connectivity (FC) based GCN framework for binary classifications using resting-state fMRI data. We explored different types and processing methods of FC and evaluated the performance on the OASIS-3 dataset. We developed the GCN model for two different purposes: (1) MCI diagnosis: classifying MCI from normal controls (NCs); and (2) dementia risk prediction: classifying NCs from subjects who have the potential for developing MCI but have not been clinically diagnosed as MCI. Main results . The results of the experiments revealed several important findings: First, the proposed GCN outperformed both the baseline GCN and Support Vector Machine (SVM). It achieved the best average accuracy of 80.3% (11.7% higher than the baseline GCN and 23.5% higher than SVM) and the highest accuracy of 91.2%. Secondly, the GCN framework with (absolute) individual FC performed slightly better than that with global FC generally. However, GCN using global graphs with appropriate connectivity can achieve equivalent or superior performance to individual graphs in some cases, which highlights the significance of suitable connectivity for achieving performance. Additionally, the results indicate that the self-network connectivity of specific brain network regions (such as default mode network, visual network, ventral attention network and somatomotor network) may play a more significant role in GCN classification. Significance . Overall, this study offers valuable insights into the application of GCNs in brain analysis and early diagnosis of dementia. This contributes significantly to the understanding of MCI and has substantial potential for clinical applications in early diagnosis and intervention for dementia and other neurodegenerative diseases. Our code for GCN implementation is available at: https://github.com/Shuning-Han/FC-based-GCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
图图完成签到 ,获得积分20
刚刚
Yaraaa完成签到,获得积分10
1秒前
杨康完成签到,获得积分20
2秒前
大模型应助向日葵采纳,获得10
2秒前
2秒前
2秒前
啾啾发布了新的文献求助10
3秒前
邓超完成签到,获得积分10
3秒前
17871635733完成签到,获得积分10
3秒前
今夜小楼一曲完成签到,获得积分10
6秒前
6秒前
7秒前
杨康发布了新的文献求助10
7秒前
8秒前
9秒前
Miranda发布了新的文献求助10
9秒前
如意山晴完成签到 ,获得积分10
11秒前
11秒前
伟@完成签到 ,获得积分10
11秒前
13秒前
13秒前
曾经飞烟完成签到,获得积分10
14秒前
zhengyalan完成签到 ,获得积分10
15秒前
15秒前
April完成签到,获得积分10
15秒前
一吃就饱发布了新的文献求助10
17秒前
李卷卷发布了新的文献求助10
17秒前
徐小徐发布了新的文献求助10
18秒前
KOKOGOGO发布了新的文献求助10
19秒前
霖霖发布了新的文献求助10
19秒前
20秒前
Ru完成签到,获得积分10
20秒前
希望天下0贩的0应助紫芋采纳,获得10
21秒前
啾啾完成签到,获得积分10
21秒前
张三驳回了今后应助
21秒前
明理平文完成签到 ,获得积分10
22秒前
田様应助yangou采纳,获得10
22秒前
23秒前
幸运星完成签到 ,获得积分10
24秒前
在水一方应助施傲天采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4898662
求助须知:如何正确求助?哪些是违规求助? 4179345
关于积分的说明 12974628
捐赠科研通 3943264
什么是DOI,文献DOI怎么找? 2163262
邀请新用户注册赠送积分活动 1181613
关于科研通互助平台的介绍 1087229