Early prediction of dementia using fMRI data with a graph convolutional network approach

痴呆 支持向量机 图形 计算机科学 人工智能 认知障碍 模式识别(心理学) 功能磁共振成像 机器学习 认知 疾病 心理学 医学 神经科学 病理 理论计算机科学
作者
Shuning Han,Zhe Sun,Kanhao Zhao,Feng Duan,César F. Caiafa,Yu Zhang,Jordi Solé‐Casals
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (1): 016013-016013 被引量:11
标识
DOI:10.1088/1741-2552/ad1e22
摘要

Abstract Objective . Alzheimer’s disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to detect patients in the mild cognitive impairment (MCI) stage or even earlier, enabling effective interventions to prevent further deterioration of dementia. This study focuses on the early prediction of dementia utilizing Magnetic Resonance Imaging (MRI) data, using the proposed Graph Convolutional Networks (GCNs). Approach . Specifically, we developed a functional connectivity (FC) based GCN framework for binary classifications using resting-state fMRI data. We explored different types and processing methods of FC and evaluated the performance on the OASIS-3 dataset. We developed the GCN model for two different purposes: (1) MCI diagnosis: classifying MCI from normal controls (NCs); and (2) dementia risk prediction: classifying NCs from subjects who have the potential for developing MCI but have not been clinically diagnosed as MCI. Main results . The results of the experiments revealed several important findings: First, the proposed GCN outperformed both the baseline GCN and Support Vector Machine (SVM). It achieved the best average accuracy of 80.3% (11.7% higher than the baseline GCN and 23.5% higher than SVM) and the highest accuracy of 91.2%. Secondly, the GCN framework with (absolute) individual FC performed slightly better than that with global FC generally. However, GCN using global graphs with appropriate connectivity can achieve equivalent or superior performance to individual graphs in some cases, which highlights the significance of suitable connectivity for achieving performance. Additionally, the results indicate that the self-network connectivity of specific brain network regions (such as default mode network, visual network, ventral attention network and somatomotor network) may play a more significant role in GCN classification. Significance . Overall, this study offers valuable insights into the application of GCNs in brain analysis and early diagnosis of dementia. This contributes significantly to the understanding of MCI and has substantial potential for clinical applications in early diagnosis and intervention for dementia and other neurodegenerative diseases. Our code for GCN implementation is available at: https://github.com/Shuning-Han/FC-based-GCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YAO完成签到 ,获得积分10
刚刚
爱笑的啤酒关注了科研通微信公众号
刚刚
美好斓发布了新的文献求助10
刚刚
ii发布了新的文献求助10
1秒前
nancylan应助感动的绮山采纳,获得10
1秒前
2秒前
爱笑的啤酒关注了科研通微信公众号
2秒前
2秒前
难过的又柔完成签到,获得积分10
2秒前
嘿嘿应助decademe采纳,获得10
4秒前
虚心的小兔子应助子铭采纳,获得20
5秒前
楚天正阔发布了新的文献求助10
5秒前
张朔发布了新的文献求助10
5秒前
清脆保温杯完成签到,获得积分10
5秒前
6秒前
6秒前
汉堡包应助zz采纳,获得10
6秒前
6秒前
feizh完成签到,获得积分10
6秒前
7秒前
7秒前
lmh完成签到,获得积分10
8秒前
8秒前
隐形曼青应助胡少杰采纳,获得10
8秒前
8秒前
GiGi发布了新的文献求助10
9秒前
9秒前
yzr完成签到,获得积分10
9秒前
哈哈哈发布了新的文献求助10
9秒前
wlscj应助WSGQT采纳,获得20
9秒前
hrrypeet完成签到,获得积分10
9秒前
光电很亮发布了新的文献求助10
10秒前
zz发布了新的文献求助10
10秒前
小何发布了新的文献求助10
10秒前
NexusExplorer应助大气向雪采纳,获得10
10秒前
丘比特应助夏天采纳,获得10
10秒前
小二郎应助Mikey_Teng采纳,获得10
11秒前
Lucas应助张朔采纳,获得10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435658
求助须知:如何正确求助?哪些是违规求助? 4547851
关于积分的说明 14210979
捐赠科研通 4468067
什么是DOI,文献DOI怎么找? 2448863
邀请新用户注册赠送积分活动 1439730
关于科研通互助平台的介绍 1416413