Early prediction of dementia using fMRI data with a graph convolutional network approach

痴呆 支持向量机 图形 计算机科学 人工智能 认知障碍 模式识别(心理学) 功能磁共振成像 机器学习 认知 疾病 心理学 医学 神经科学 病理 理论计算机科学
作者
Shuning Han,Zhe Sun,Kanhao Zhao,Feng Duan,César F. Caiafa,Yu Zhang,Jordi Solé‐Casals
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (1): 016013-016013 被引量:11
标识
DOI:10.1088/1741-2552/ad1e22
摘要

Abstract Objective . Alzheimer’s disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to detect patients in the mild cognitive impairment (MCI) stage or even earlier, enabling effective interventions to prevent further deterioration of dementia. This study focuses on the early prediction of dementia utilizing Magnetic Resonance Imaging (MRI) data, using the proposed Graph Convolutional Networks (GCNs). Approach . Specifically, we developed a functional connectivity (FC) based GCN framework for binary classifications using resting-state fMRI data. We explored different types and processing methods of FC and evaluated the performance on the OASIS-3 dataset. We developed the GCN model for two different purposes: (1) MCI diagnosis: classifying MCI from normal controls (NCs); and (2) dementia risk prediction: classifying NCs from subjects who have the potential for developing MCI but have not been clinically diagnosed as MCI. Main results . The results of the experiments revealed several important findings: First, the proposed GCN outperformed both the baseline GCN and Support Vector Machine (SVM). It achieved the best average accuracy of 80.3% (11.7% higher than the baseline GCN and 23.5% higher than SVM) and the highest accuracy of 91.2%. Secondly, the GCN framework with (absolute) individual FC performed slightly better than that with global FC generally. However, GCN using global graphs with appropriate connectivity can achieve equivalent or superior performance to individual graphs in some cases, which highlights the significance of suitable connectivity for achieving performance. Additionally, the results indicate that the self-network connectivity of specific brain network regions (such as default mode network, visual network, ventral attention network and somatomotor network) may play a more significant role in GCN classification. Significance . Overall, this study offers valuable insights into the application of GCNs in brain analysis and early diagnosis of dementia. This contributes significantly to the understanding of MCI and has substantial potential for clinical applications in early diagnosis and intervention for dementia and other neurodegenerative diseases. Our code for GCN implementation is available at: https://github.com/Shuning-Han/FC-based-GCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
中中完成签到,获得积分10
刚刚
农夫完成签到,获得积分0
1秒前
爆米花应助DeepLearning采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
Akim应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
lilili应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
Hilda007应助科研通管家采纳,获得10
3秒前
Hayat应助科研通管家采纳,获得10
3秒前
3秒前
共享精神应助梦雨甘采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
4秒前
4秒前
霞霞子关注了科研通微信公众号
4秒前
sl发布了新的文献求助10
4秒前
Jasper应助6a采纳,获得10
5秒前
zhangyueyue完成签到,获得积分10
6秒前
一天完成签到 ,获得积分10
7秒前
8秒前
9秒前
领导范儿应助可研小冲采纳,获得10
10秒前
11秒前
UP关注了科研通微信公众号
12秒前
何宗迅发布了新的文献求助10
13秒前
牛牛超人完成签到,获得积分10
13秒前
不安冷之完成签到,获得积分10
14秒前
月月发布了新的文献求助10
15秒前
Maqian完成签到,获得积分20
16秒前
kangbushui发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
Maqian发布了新的文献求助10
21秒前
22秒前
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125798
求助须知:如何正确求助?哪些是违规求助? 4329481
关于积分的说明 13491192
捐赠科研通 4164431
什么是DOI,文献DOI怎么找? 2282927
邀请新用户注册赠送积分活动 1283954
关于科研通互助平台的介绍 1223373