Early prediction of dementia using fMRI data with a graph convolutional network approach

痴呆 支持向量机 图形 计算机科学 人工智能 认知障碍 模式识别(心理学) 功能磁共振成像 机器学习 认知 疾病 心理学 医学 神经科学 病理 理论计算机科学
作者
Shuning Han,Zhe Sun,Kanhao Zhao,Feng Duan,César F. Caiafa,Yu Zhang,Jordi Solé‐Casals
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (1): 016013-016013 被引量:11
标识
DOI:10.1088/1741-2552/ad1e22
摘要

Abstract Objective . Alzheimer’s disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to detect patients in the mild cognitive impairment (MCI) stage or even earlier, enabling effective interventions to prevent further deterioration of dementia. This study focuses on the early prediction of dementia utilizing Magnetic Resonance Imaging (MRI) data, using the proposed Graph Convolutional Networks (GCNs). Approach . Specifically, we developed a functional connectivity (FC) based GCN framework for binary classifications using resting-state fMRI data. We explored different types and processing methods of FC and evaluated the performance on the OASIS-3 dataset. We developed the GCN model for two different purposes: (1) MCI diagnosis: classifying MCI from normal controls (NCs); and (2) dementia risk prediction: classifying NCs from subjects who have the potential for developing MCI but have not been clinically diagnosed as MCI. Main results . The results of the experiments revealed several important findings: First, the proposed GCN outperformed both the baseline GCN and Support Vector Machine (SVM). It achieved the best average accuracy of 80.3% (11.7% higher than the baseline GCN and 23.5% higher than SVM) and the highest accuracy of 91.2%. Secondly, the GCN framework with (absolute) individual FC performed slightly better than that with global FC generally. However, GCN using global graphs with appropriate connectivity can achieve equivalent or superior performance to individual graphs in some cases, which highlights the significance of suitable connectivity for achieving performance. Additionally, the results indicate that the self-network connectivity of specific brain network regions (such as default mode network, visual network, ventral attention network and somatomotor network) may play a more significant role in GCN classification. Significance . Overall, this study offers valuable insights into the application of GCNs in brain analysis and early diagnosis of dementia. This contributes significantly to the understanding of MCI and has substantial potential for clinical applications in early diagnosis and intervention for dementia and other neurodegenerative diseases. Our code for GCN implementation is available at: https://github.com/Shuning-Han/FC-based-GCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李大柱发布了新的文献求助10
1秒前
英姑应助蜡笔小新采纳,获得20
2秒前
Owen应助江晓龙采纳,获得10
3秒前
彭于晏应助向磊采纳,获得10
3秒前
乐观的海发布了新的文献求助10
4秒前
我心飞翔发布了新的文献求助10
4秒前
5秒前
赖以筠完成签到,获得积分10
5秒前
脑洞疼应助李大柱采纳,获得10
6秒前
7秒前
7秒前
8秒前
腼腆的立辉完成签到,获得积分10
8秒前
9秒前
李凤燕完成签到,获得积分10
9秒前
Small_L发布了新的文献求助10
10秒前
10秒前
天天应助ghhhhhhh采纳,获得10
10秒前
ziziforever发布了新的文献求助10
12秒前
12秒前
瘦瘦安梦发布了新的文献求助10
12秒前
大模型应助czc采纳,获得10
13秒前
13秒前
所所应助冯婉怡采纳,获得10
14秒前
刘子发布了新的文献求助10
14秒前
hgc发布了新的文献求助20
14秒前
14秒前
15秒前
15秒前
mimi完成签到,获得积分10
16秒前
16秒前
17秒前
weerfi完成签到,获得积分10
17秒前
哈哈哈哈完成签到,获得积分10
17秒前
无花果应助1874采纳,获得10
17秒前
只看见完成签到,获得积分10
17秒前
18秒前
1111发布了新的文献求助10
18秒前
尉迟涵发布了新的文献求助10
18秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5341805
求助须知:如何正确求助?哪些是违规求助? 4477914
关于积分的说明 13937122
捐赠科研通 4374126
什么是DOI,文献DOI怎么找? 2403300
邀请新用户注册赠送积分活动 1396120
关于科研通互助平台的介绍 1368147