清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Early prediction of dementia using fMRI data with a graph convolutional network approach

痴呆 支持向量机 图形 计算机科学 人工智能 认知障碍 模式识别(心理学) 功能磁共振成像 机器学习 认知 疾病 心理学 医学 神经科学 病理 理论计算机科学
作者
Shuning Han,Zhe Sun,Kanhao Zhao,Feng Duan,César F. Caiafa,Yu Zhang,Jordi Solé‐Casals
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (1): 016013-016013 被引量:11
标识
DOI:10.1088/1741-2552/ad1e22
摘要

Abstract Objective . Alzheimer’s disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to detect patients in the mild cognitive impairment (MCI) stage or even earlier, enabling effective interventions to prevent further deterioration of dementia. This study focuses on the early prediction of dementia utilizing Magnetic Resonance Imaging (MRI) data, using the proposed Graph Convolutional Networks (GCNs). Approach . Specifically, we developed a functional connectivity (FC) based GCN framework for binary classifications using resting-state fMRI data. We explored different types and processing methods of FC and evaluated the performance on the OASIS-3 dataset. We developed the GCN model for two different purposes: (1) MCI diagnosis: classifying MCI from normal controls (NCs); and (2) dementia risk prediction: classifying NCs from subjects who have the potential for developing MCI but have not been clinically diagnosed as MCI. Main results . The results of the experiments revealed several important findings: First, the proposed GCN outperformed both the baseline GCN and Support Vector Machine (SVM). It achieved the best average accuracy of 80.3% (11.7% higher than the baseline GCN and 23.5% higher than SVM) and the highest accuracy of 91.2%. Secondly, the GCN framework with (absolute) individual FC performed slightly better than that with global FC generally. However, GCN using global graphs with appropriate connectivity can achieve equivalent or superior performance to individual graphs in some cases, which highlights the significance of suitable connectivity for achieving performance. Additionally, the results indicate that the self-network connectivity of specific brain network regions (such as default mode network, visual network, ventral attention network and somatomotor network) may play a more significant role in GCN classification. Significance . Overall, this study offers valuable insights into the application of GCNs in brain analysis and early diagnosis of dementia. This contributes significantly to the understanding of MCI and has substantial potential for clinical applications in early diagnosis and intervention for dementia and other neurodegenerative diseases. Our code for GCN implementation is available at: https://github.com/Shuning-Han/FC-based-GCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
www完成签到 ,获得积分10
11秒前
18秒前
幸福大白发布了新的文献求助10
21秒前
orixero应助ping采纳,获得10
28秒前
披着羊皮的狼完成签到 ,获得积分10
29秒前
allrubbish完成签到,获得积分10
34秒前
搜集达人应助科研通管家采纳,获得10
46秒前
小鸟芋圆露露完成签到 ,获得积分10
55秒前
铁甲小宝完成签到,获得积分10
56秒前
56秒前
无悔完成签到 ,获得积分10
56秒前
幸福大白发布了新的文献求助10
1分钟前
1分钟前
1分钟前
mei完成签到,获得积分10
1分钟前
ping发布了新的文献求助10
1分钟前
CodeCraft应助勤恳傲旋采纳,获得10
1分钟前
www完成签到 ,获得积分10
1分钟前
四氧化三铁完成签到,获得积分10
1分钟前
1分钟前
勤恳傲旋发布了新的文献求助10
1分钟前
科研通AI5应助mei采纳,获得10
2分钟前
馆长应助Z1070741749采纳,获得30
2分钟前
科研通AI2S应助Z1070741749采纳,获得10
2分钟前
攀攀完成签到 ,获得积分10
2分钟前
研友_nxw2xL完成签到,获得积分10
2分钟前
null应助科研通管家采纳,获得10
2分钟前
muriel完成签到,获得积分0
2分钟前
领导范儿应助幸福大白采纳,获得10
2分钟前
领导范儿应助幸福大白采纳,获得10
2分钟前
小蘑菇应助幸福大白采纳,获得10
2分钟前
搜集达人应助幸福大白采纳,获得10
2分钟前
善学以致用应助ping采纳,获得10
3分钟前
aaiirrii完成签到 ,获得积分10
3分钟前
3分钟前
幸福大白发布了新的文献求助10
3分钟前
3分钟前
幸福大白发布了新的文献求助10
4分钟前
4分钟前
ping发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4569504
求助须知:如何正确求助?哪些是违规求助? 3991585
关于积分的说明 12355974
捐赠科研通 3663939
什么是DOI,文献DOI怎么找? 2019154
邀请新用户注册赠送积分活动 1053631
科研通“疑难数据库(出版商)”最低求助积分说明 941159