Early prediction of dementia using fMRI data with a graph convolutional network approach

痴呆 支持向量机 图形 计算机科学 人工智能 认知障碍 模式识别(心理学) 二元分类 机器学习 认知 疾病 心理学 医学 病理 精神科 理论计算机科学
作者
Shuning Han,Zhe Sun,Kanhao Zhao,Feng Duan,César F. Caiafa,Yu Zhang,Jordi Solé‐Casals
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (1): 016013-016013 被引量:3
标识
DOI:10.1088/1741-2552/ad1e22
摘要

Abstract Objective . Alzheimer’s disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to detect patients in the mild cognitive impairment (MCI) stage or even earlier, enabling effective interventions to prevent further deterioration of dementia. This study focuses on the early prediction of dementia utilizing Magnetic Resonance Imaging (MRI) data, using the proposed Graph Convolutional Networks (GCNs). Approach . Specifically, we developed a functional connectivity (FC) based GCN framework for binary classifications using resting-state fMRI data. We explored different types and processing methods of FC and evaluated the performance on the OASIS-3 dataset. We developed the GCN model for two different purposes: (1) MCI diagnosis: classifying MCI from normal controls (NCs); and (2) dementia risk prediction: classifying NCs from subjects who have the potential for developing MCI but have not been clinically diagnosed as MCI. Main results . The results of the experiments revealed several important findings: First, the proposed GCN outperformed both the baseline GCN and Support Vector Machine (SVM). It achieved the best average accuracy of 80.3% (11.7% higher than the baseline GCN and 23.5% higher than SVM) and the highest accuracy of 91.2%. Secondly, the GCN framework with (absolute) individual FC performed slightly better than that with global FC generally. However, GCN using global graphs with appropriate connectivity can achieve equivalent or superior performance to individual graphs in some cases, which highlights the significance of suitable connectivity for achieving performance. Additionally, the results indicate that the self-network connectivity of specific brain network regions (such as default mode network, visual network, ventral attention network and somatomotor network) may play a more significant role in GCN classification. Significance . Overall, this study offers valuable insights into the application of GCNs in brain analysis and early diagnosis of dementia. This contributes significantly to the understanding of MCI and has substantial potential for clinical applications in early diagnosis and intervention for dementia and other neurodegenerative diseases. Our code for GCN implementation is available at: https://github.com/Shuning-Han/FC-based-GCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
风槿完成签到 ,获得积分10
2秒前
海阔凭发布了新的文献求助10
2秒前
Owen应助3033采纳,获得10
3秒前
情怀应助3033采纳,获得10
3秒前
Owen应助狂野绿竹采纳,获得10
4秒前
4秒前
5秒前
阿占发布了新的文献求助10
5秒前
完美世界应助慕容飞凤采纳,获得10
6秒前
开朗雪巧完成签到,获得积分10
7秒前
8秒前
传奇3应助FOODHUA采纳,获得10
9秒前
华东少年完成签到,获得积分10
9秒前
云起龙都发布了新的文献求助10
9秒前
9秒前
奋斗康乃馨完成签到 ,获得积分10
10秒前
11秒前
11秒前
11秒前
Dou_Xiaowen发布了新的文献求助10
12秒前
大橙子发布了新的文献求助10
13秒前
桐桐应助gan采纳,获得10
14秒前
yi发布了新的文献求助10
14秒前
慕容飞凤发布了新的文献求助10
15秒前
15秒前
坚定的傲易完成签到 ,获得积分10
17秒前
17秒前
NexusExplorer应助影子采纳,获得10
18秒前
章鱼发布了新的文献求助30
20秒前
完美世界应助短发飘飘采纳,获得10
21秒前
FOODHUA发布了新的文献求助10
21秒前
小蝶完成签到,获得积分10
27秒前
自由完成签到 ,获得积分10
29秒前
29秒前
30秒前
30秒前
龙无赖完成签到,获得积分10
31秒前
33秒前
高鑫发布了新的文献求助10
35秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163904
求助须知:如何正确求助?哪些是违规求助? 2814758
关于积分的说明 7906420
捐赠科研通 2474340
什么是DOI,文献DOI怎么找? 1317459
科研通“疑难数据库(出版商)”最低求助积分说明 631769
版权声明 602198