Early prediction of dementia using fMRI data with a graph convolutional network approach

痴呆 支持向量机 图形 计算机科学 人工智能 认知障碍 模式识别(心理学) 功能磁共振成像 机器学习 认知 疾病 心理学 医学 神经科学 病理 理论计算机科学
作者
Shuning Han,Zhe Sun,Kanhao Zhao,Feng Duan,César F. Caiafa,Yu Zhang,Jordi Solé‐Casals
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (1): 016013-016013 被引量:7
标识
DOI:10.1088/1741-2552/ad1e22
摘要

Abstract Objective . Alzheimer’s disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to detect patients in the mild cognitive impairment (MCI) stage or even earlier, enabling effective interventions to prevent further deterioration of dementia. This study focuses on the early prediction of dementia utilizing Magnetic Resonance Imaging (MRI) data, using the proposed Graph Convolutional Networks (GCNs). Approach . Specifically, we developed a functional connectivity (FC) based GCN framework for binary classifications using resting-state fMRI data. We explored different types and processing methods of FC and evaluated the performance on the OASIS-3 dataset. We developed the GCN model for two different purposes: (1) MCI diagnosis: classifying MCI from normal controls (NCs); and (2) dementia risk prediction: classifying NCs from subjects who have the potential for developing MCI but have not been clinically diagnosed as MCI. Main results . The results of the experiments revealed several important findings: First, the proposed GCN outperformed both the baseline GCN and Support Vector Machine (SVM). It achieved the best average accuracy of 80.3% (11.7% higher than the baseline GCN and 23.5% higher than SVM) and the highest accuracy of 91.2%. Secondly, the GCN framework with (absolute) individual FC performed slightly better than that with global FC generally. However, GCN using global graphs with appropriate connectivity can achieve equivalent or superior performance to individual graphs in some cases, which highlights the significance of suitable connectivity for achieving performance. Additionally, the results indicate that the self-network connectivity of specific brain network regions (such as default mode network, visual network, ventral attention network and somatomotor network) may play a more significant role in GCN classification. Significance . Overall, this study offers valuable insights into the application of GCNs in brain analysis and early diagnosis of dementia. This contributes significantly to the understanding of MCI and has substantial potential for clinical applications in early diagnosis and intervention for dementia and other neurodegenerative diseases. Our code for GCN implementation is available at: https://github.com/Shuning-Han/FC-based-GCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得30
刚刚
差劲先森完成签到 ,获得积分10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
科目三应助goodgoodstudy采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
Wu发布了新的文献求助10
1秒前
1秒前
lemon应助科研通管家采纳,获得20
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
打打应助聪聪great采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
2秒前
无名完成签到,获得积分10
2秒前
打打应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得40
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
只A不B应助科研通管家采纳,获得30
2秒前
2秒前
SYanan完成签到 ,获得积分10
3秒前
Owen应助大方嵩采纳,获得10
3秒前
4秒前
4秒前
4秒前
耍酷花卷发布了新的文献求助10
4秒前
孟陬十一完成签到,获得积分10
5秒前
5秒前
搞怪的凡蕾完成签到,获得积分10
6秒前
7秒前
7秒前
万能图书馆应助刘星星采纳,获得10
8秒前
Ting完成签到 ,获得积分10
8秒前
8秒前
SciGPT应助希夷采纳,获得10
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762