Gaussian meta-feature balanced aggregation for few-shot synthetic aperture radar target detection

计算机科学 模式识别(心理学) 人工智能 高斯分布 特征(语言学) 合成孔径雷达 公制(单位) 投影(关系代数) 嵌入 数学 算法 量子力学 物理 哲学 语言学 经济 运营管理
作者
Zheng Zhou,Zongyong Cui,Kailing Tang,Yu Tian,Yiming Pi,Zongjie Cao
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:208: 89-106
标识
DOI:10.1016/j.isprsjprs.2024.01.003
摘要

Due to the high mobility and strong concealment characteristics of synthetic aperture radar (SAR) targets, the corresponding SAR datasets exhibit few-shot data properties, and there is a significant lack of research on few-shot target detection methods in the SAR domain. Furthermore, this study is subject to the following limitations: the scarcity of SAR data and significant sample variations make it difficult to control class centers using existing methods, and the learned models tend to be biased towards base classes while easily confusing novel classes with base classes. These limitations hinder the generalization of knowledge from base classes when detecting novel class targets. In this work, we propose a novel few-shot SAR target detection method based on Gaussian meta-feature balanced aggregation (GMFBA), which is based on meta-learning. Specifically, we first propose two novel feature aggregation methods with Gaussian metrics, namely Gaussian projection distribution metric (GPDM) and Gaussian kernel mean embedding metric (GKMEM). By estimating class distribution with variational autoencoders to replace traditional class prototypes, we sample from robust distributions and measure projection Wasserstein distance and Gaussian kernel mean embedding distance with prior distributions, obtaining the best robust support features under the optimal measurement results. Then, based on GPDM and GKMEM, we propose a novel balanced inter-class uncorrelated aggregation (BICUA) method, which extracts support features of each class according to the proportion of samples and aggregates them with query features in a balanced manner, promoting feature representation between different classes and ensuring no interference between features to significantly reduce confusion between base classes and novel classes. Specifically, GMFBA outperforms the state-of-the-art method G-FSOD significantly in all settings, achieving state-of-the-art performance. In contrast, the novel class detection performance of GMFBA has shown an average improvement of 8.56% on split1 and split2 of the SRSDD-v1.0 dataset, and an average improvement of 1.41% on split1 and split2 of the MSAR-1.0 dataset. The code is available at https://github.com/Caltech-Z/GMFBA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
lx完成签到,获得积分10
1秒前
Uaena应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
evz应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
ChenWen完成签到,获得积分10
2秒前
寒月如雪发布了新的文献求助10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
2秒前
Hello应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
111应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得30
3秒前
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
YangChunyan完成签到,获得积分10
3秒前
一一一应助陈平安采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
3秒前
斯文败类应助L77采纳,获得10
4秒前
6秒前
凤头鹅几完成签到,获得积分10
6秒前
wq完成签到 ,获得积分10
6秒前
孙大大完成签到,获得积分20
6秒前
溫蒂发布了新的文献求助10
7秒前
宋羽完成签到,获得积分20
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531309
求助须知:如何正确求助?哪些是违规求助? 4620136
关于积分的说明 14571914
捐赠科研通 4559695
什么是DOI,文献DOI怎么找? 2498561
邀请新用户注册赠送积分活动 1478526
关于科研通互助平台的介绍 1449957