亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Gaussian meta-feature balanced aggregation for few-shot synthetic aperture radar target detection

计算机科学 模式识别(心理学) 人工智能 高斯分布 特征(语言学) 合成孔径雷达 公制(单位) 投影(关系代数) 嵌入 数学 算法 量子力学 物理 哲学 语言学 经济 运营管理
作者
Zheng Zhou,Zongyong Cui,Kailing Tang,Yu Tian,Yiming Pi,Zongjie Cao
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:208: 89-106
标识
DOI:10.1016/j.isprsjprs.2024.01.003
摘要

Due to the high mobility and strong concealment characteristics of synthetic aperture radar (SAR) targets, the corresponding SAR datasets exhibit few-shot data properties, and there is a significant lack of research on few-shot target detection methods in the SAR domain. Furthermore, this study is subject to the following limitations: the scarcity of SAR data and significant sample variations make it difficult to control class centers using existing methods, and the learned models tend to be biased towards base classes while easily confusing novel classes with base classes. These limitations hinder the generalization of knowledge from base classes when detecting novel class targets. In this work, we propose a novel few-shot SAR target detection method based on Gaussian meta-feature balanced aggregation (GMFBA), which is based on meta-learning. Specifically, we first propose two novel feature aggregation methods with Gaussian metrics, namely Gaussian projection distribution metric (GPDM) and Gaussian kernel mean embedding metric (GKMEM). By estimating class distribution with variational autoencoders to replace traditional class prototypes, we sample from robust distributions and measure projection Wasserstein distance and Gaussian kernel mean embedding distance with prior distributions, obtaining the best robust support features under the optimal measurement results. Then, based on GPDM and GKMEM, we propose a novel balanced inter-class uncorrelated aggregation (BICUA) method, which extracts support features of each class according to the proportion of samples and aggregates them with query features in a balanced manner, promoting feature representation between different classes and ensuring no interference between features to significantly reduce confusion between base classes and novel classes. Specifically, GMFBA outperforms the state-of-the-art method G-FSOD significantly in all settings, achieving state-of-the-art performance. In contrast, the novel class detection performance of GMFBA has shown an average improvement of 8.56% on split1 and split2 of the SRSDD-v1.0 dataset, and an average improvement of 1.41% on split1 and split2 of the MSAR-1.0 dataset. The code is available at https://github.com/Caltech-Z/GMFBA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃了就会胖完成签到 ,获得积分10
刚刚
小米辣发布了新的文献求助30
3秒前
dream完成签到 ,获得积分10
5秒前
16秒前
41秒前
丫子天空发布了新的文献求助10
46秒前
48秒前
lzxbarry应助andrele采纳,获得30
56秒前
燕子完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
呆萌的鼠标完成签到 ,获得积分0
2分钟前
2分钟前
似水无痕完成签到,获得积分10
2分钟前
Anto完成签到,获得积分10
2分钟前
kuoping完成签到,获得积分0
2分钟前
李健应助科研通管家采纳,获得10
2分钟前
丫子天空完成签到,获得积分20
3分钟前
QCB完成签到 ,获得积分10
3分钟前
wodetaiyangLLL完成签到 ,获得积分10
3分钟前
科研通AI5应助彭日晓采纳,获得10
3分钟前
ZHANG完成签到 ,获得积分10
4分钟前
tenta完成签到,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
千里草完成签到,获得积分10
5分钟前
彭日晓发布了新的文献求助10
5分钟前
significant发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
忍忍发布了新的文献求助30
6分钟前
kingcoffee完成签到 ,获得积分10
6分钟前
忍忍完成签到 ,获得积分10
6分钟前
彭日晓完成签到,获得积分10
7分钟前
8分钟前
靓丽的熠彤完成签到,获得积分10
8分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4569068
求助须知:如何正确求助?哪些是违规求助? 3991392
关于积分的说明 12355756
捐赠科研通 3663569
什么是DOI,文献DOI怎么找? 2019007
邀请新用户注册赠送积分活动 1053435
科研通“疑难数据库(出版商)”最低求助积分说明 940978