Gaussian meta-feature balanced aggregation for few-shot synthetic aperture radar target detection

计算机科学 模式识别(心理学) 人工智能 高斯分布 特征(语言学) 合成孔径雷达 公制(单位) 投影(关系代数) 嵌入 数学 算法 语言学 哲学 物理 运营管理 量子力学 经济
作者
Zheng Zhou,Zongyong Cui,Kailing Tang,Yu Tian,Yiming Pi,Zongjie Cao
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:208: 89-106
标识
DOI:10.1016/j.isprsjprs.2024.01.003
摘要

Due to the high mobility and strong concealment characteristics of synthetic aperture radar (SAR) targets, the corresponding SAR datasets exhibit few-shot data properties, and there is a significant lack of research on few-shot target detection methods in the SAR domain. Furthermore, this study is subject to the following limitations: the scarcity of SAR data and significant sample variations make it difficult to control class centers using existing methods, and the learned models tend to be biased towards base classes while easily confusing novel classes with base classes. These limitations hinder the generalization of knowledge from base classes when detecting novel class targets. In this work, we propose a novel few-shot SAR target detection method based on Gaussian meta-feature balanced aggregation (GMFBA), which is based on meta-learning. Specifically, we first propose two novel feature aggregation methods with Gaussian metrics, namely Gaussian projection distribution metric (GPDM) and Gaussian kernel mean embedding metric (GKMEM). By estimating class distribution with variational autoencoders to replace traditional class prototypes, we sample from robust distributions and measure projection Wasserstein distance and Gaussian kernel mean embedding distance with prior distributions, obtaining the best robust support features under the optimal measurement results. Then, based on GPDM and GKMEM, we propose a novel balanced inter-class uncorrelated aggregation (BICUA) method, which extracts support features of each class according to the proportion of samples and aggregates them with query features in a balanced manner, promoting feature representation between different classes and ensuring no interference between features to significantly reduce confusion between base classes and novel classes. Specifically, GMFBA outperforms the state-of-the-art method G-FSOD significantly in all settings, achieving state-of-the-art performance. In contrast, the novel class detection performance of GMFBA has shown an average improvement of 8.56% on split1 and split2 of the SRSDD-v1.0 dataset, and an average improvement of 1.41% on split1 and split2 of the MSAR-1.0 dataset. The code is available at https://github.com/Caltech-Z/GMFBA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
healer完成签到,获得积分10
2秒前
4秒前
忘词完成签到,获得积分10
5秒前
chen完成签到 ,获得积分10
5秒前
萝卜卷心菜完成签到 ,获得积分10
7秒前
9秒前
目m发布了新的文献求助10
9秒前
10秒前
王也发布了新的文献求助10
15秒前
Bailey完成签到,获得积分10
15秒前
16秒前
脑洞疼应助MoNeng采纳,获得10
18秒前
18秒前
蓝天应助加贝采纳,获得10
19秒前
20秒前
刘泽民完成签到,获得积分10
22秒前
CodeCraft应助佳期采纳,获得10
23秒前
浮游应助草中有粑粑采纳,获得10
23秒前
小二郎应助YEZQ采纳,获得10
24秒前
24秒前
25秒前
25秒前
椰子完成签到,获得积分10
27秒前
dzc完成签到,获得积分20
28秒前
Lyubb完成签到 ,获得积分10
29秒前
MoNeng发布了新的文献求助10
30秒前
31秒前
月半完成签到,获得积分10
31秒前
32秒前
VDC应助karstbing采纳,获得30
32秒前
浮游应助草中有粑粑采纳,获得10
32秒前
Orange应助冰激凌采纳,获得10
33秒前
小康完成签到,获得积分10
33秒前
34秒前
沉静弘文完成签到 ,获得积分10
34秒前
充电宝应助王也采纳,获得10
35秒前
linclee完成签到,获得积分10
36秒前
36秒前
佳期发布了新的文献求助10
36秒前
兜兜完成签到 ,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563635
求助须知:如何正确求助?哪些是违规求助? 4648551
关于积分的说明 14685268
捐赠科研通 4590482
什么是DOI,文献DOI怎么找? 2518601
邀请新用户注册赠送积分活动 1491196
关于科研通互助平台的介绍 1462478