Gaussian meta-feature balanced aggregation for few-shot synthetic aperture radar target detection

计算机科学 模式识别(心理学) 人工智能 高斯分布 特征(语言学) 合成孔径雷达 公制(单位) 投影(关系代数) 嵌入 数学 算法 语言学 哲学 物理 运营管理 量子力学 经济
作者
Zheng Zhou,Zongyong Cui,Kailing Tang,Yu Tian,Yiming Pi,Zongjie Cao
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:208: 89-106
标识
DOI:10.1016/j.isprsjprs.2024.01.003
摘要

Due to the high mobility and strong concealment characteristics of synthetic aperture radar (SAR) targets, the corresponding SAR datasets exhibit few-shot data properties, and there is a significant lack of research on few-shot target detection methods in the SAR domain. Furthermore, this study is subject to the following limitations: the scarcity of SAR data and significant sample variations make it difficult to control class centers using existing methods, and the learned models tend to be biased towards base classes while easily confusing novel classes with base classes. These limitations hinder the generalization of knowledge from base classes when detecting novel class targets. In this work, we propose a novel few-shot SAR target detection method based on Gaussian meta-feature balanced aggregation (GMFBA), which is based on meta-learning. Specifically, we first propose two novel feature aggregation methods with Gaussian metrics, namely Gaussian projection distribution metric (GPDM) and Gaussian kernel mean embedding metric (GKMEM). By estimating class distribution with variational autoencoders to replace traditional class prototypes, we sample from robust distributions and measure projection Wasserstein distance and Gaussian kernel mean embedding distance with prior distributions, obtaining the best robust support features under the optimal measurement results. Then, based on GPDM and GKMEM, we propose a novel balanced inter-class uncorrelated aggregation (BICUA) method, which extracts support features of each class according to the proportion of samples and aggregates them with query features in a balanced manner, promoting feature representation between different classes and ensuring no interference between features to significantly reduce confusion between base classes and novel classes. Specifically, GMFBA outperforms the state-of-the-art method G-FSOD significantly in all settings, achieving state-of-the-art performance. In contrast, the novel class detection performance of GMFBA has shown an average improvement of 8.56% on split1 and split2 of the SRSDD-v1.0 dataset, and an average improvement of 1.41% on split1 and split2 of the MSAR-1.0 dataset. The code is available at https://github.com/Caltech-Z/GMFBA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
MOOTEA完成签到,获得积分10
1秒前
liuHX完成签到,获得积分10
2秒前
冷静完成签到,获得积分10
3秒前
猪猪hero发布了新的文献求助10
3秒前
冷傲博发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
skysleeper完成签到,获得积分10
5秒前
hailiangzheng完成签到,获得积分10
6秒前
随便取完成签到,获得积分10
6秒前
时尚俊驰发布了新的文献求助10
6秒前
勤奋的如松完成签到,获得积分0
11秒前
粥可温完成签到,获得积分10
13秒前
曾珍发布了新的文献求助10
14秒前
15秒前
hzh完成签到 ,获得积分10
16秒前
gg发布了新的文献求助10
16秒前
勤劳滑板完成签到 ,获得积分10
16秒前
Jerry完成签到,获得积分10
17秒前
MrLiu完成签到,获得积分10
18秒前
冷傲博完成签到,获得积分10
18秒前
jeff完成签到,获得积分10
18秒前
LHZ完成签到,获得积分10
18秒前
所所应助时尚俊驰采纳,获得10
19秒前
影子芳香完成签到 ,获得积分10
20秒前
21秒前
21秒前
不必要再讨论适合与否完成签到,获得积分0
22秒前
无情夏寒完成签到 ,获得积分10
23秒前
慕青应助马士全采纳,获得10
24秒前
xuzj应助科研通管家采纳,获得10
24秒前
Rubby应助科研通管家采纳,获得30
25秒前
SciGPT应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
shiizii应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
25秒前
ludong_0应助科研通管家采纳,获得10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022