Gaussian meta-feature balanced aggregation for few-shot synthetic aperture radar target detection

计算机科学 模式识别(心理学) 人工智能 高斯分布 特征(语言学) 合成孔径雷达 公制(单位) 投影(关系代数) 嵌入 数学 算法 语言学 哲学 物理 运营管理 量子力学 经济
作者
Zheng Zhou,Zongyong Cui,Kailing Tang,Yu Tian,Yiming Pi,Zongjie Cao
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:208: 89-106
标识
DOI:10.1016/j.isprsjprs.2024.01.003
摘要

Due to the high mobility and strong concealment characteristics of synthetic aperture radar (SAR) targets, the corresponding SAR datasets exhibit few-shot data properties, and there is a significant lack of research on few-shot target detection methods in the SAR domain. Furthermore, this study is subject to the following limitations: the scarcity of SAR data and significant sample variations make it difficult to control class centers using existing methods, and the learned models tend to be biased towards base classes while easily confusing novel classes with base classes. These limitations hinder the generalization of knowledge from base classes when detecting novel class targets. In this work, we propose a novel few-shot SAR target detection method based on Gaussian meta-feature balanced aggregation (GMFBA), which is based on meta-learning. Specifically, we first propose two novel feature aggregation methods with Gaussian metrics, namely Gaussian projection distribution metric (GPDM) and Gaussian kernel mean embedding metric (GKMEM). By estimating class distribution with variational autoencoders to replace traditional class prototypes, we sample from robust distributions and measure projection Wasserstein distance and Gaussian kernel mean embedding distance with prior distributions, obtaining the best robust support features under the optimal measurement results. Then, based on GPDM and GKMEM, we propose a novel balanced inter-class uncorrelated aggregation (BICUA) method, which extracts support features of each class according to the proportion of samples and aggregates them with query features in a balanced manner, promoting feature representation between different classes and ensuring no interference between features to significantly reduce confusion between base classes and novel classes. Specifically, GMFBA outperforms the state-of-the-art method G-FSOD significantly in all settings, achieving state-of-the-art performance. In contrast, the novel class detection performance of GMFBA has shown an average improvement of 8.56% on split1 and split2 of the SRSDD-v1.0 dataset, and an average improvement of 1.41% on split1 and split2 of the MSAR-1.0 dataset. The code is available at https://github.com/Caltech-Z/GMFBA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QDU应助如意伟诚采纳,获得20
刚刚
彭于晏应助lxz采纳,获得10
刚刚
1秒前
Ieklos完成签到,获得积分10
1秒前
nihao完成签到,获得积分20
1秒前
xx发布了新的文献求助10
1秒前
qqqq完成签到,获得积分10
2秒前
3秒前
爆米花应助屈春洋采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
圆锥香蕉应助科研通管家采纳,获得20
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
5秒前
华仔应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
曾无忧应助科研通管家采纳,获得10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
敬老院N号应助科研通管家采纳,获得30
6秒前
WJH应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
Lny应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
6666应助科研通管家采纳,获得10
7秒前
7秒前
juqiu发布了新的文献求助10
7秒前
强扭的瓜完成签到,获得积分10
7秒前
大梦想家完成签到,获得积分10
9秒前
orixero应助王i采纳,获得10
10秒前
wanci应助juqiu采纳,获得10
10秒前
美丽的如彤完成签到,获得积分10
11秒前
Orange应助自觉从筠采纳,获得10
11秒前
hp发布了新的文献求助10
12秒前
CodeCraft应助大胆的初瑶采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604302
求助须知:如何正确求助?哪些是违规求助? 4689045
关于积分的说明 14857600
捐赠科研通 4697314
什么是DOI,文献DOI怎么找? 2541233
邀请新用户注册赠送积分活动 1507355
关于科研通互助平台的介绍 1471867