神经毒性
氧化应激
十溴二苯醚
化学
抗氧化剂
药理学
毒性
生物化学
生物
阻燃剂
有机化学
作者
Bowen Dong,Yangyang Jiang,Bendong Shi,Zhuoqi Zhang,Ziwei Zhang
标识
DOI:10.1016/j.jhazmat.2023.133307
摘要
Decabromodiphenyl ether (BDE209) is a toxic environmental pollutant that can cause neurotoxicity, behavioral abnormalities, and cognitive impairment in animals. However, the specific mechanisms of BDE209-induced neurological injury and effective preventative and therapeutic interventions are lacking. Even though selenomethionine (Se-Met) has a significant detoxification effect and protects the nervous system, it remains unclear whether Se-Met can counteract the toxic effects of BDE209. For the in vivo test, we randomly divided 60 1-week-old hy-line white variety chicks into the Con, BDE209, Se-Met, and BDE209 +Se-Met groups. In vitro experiments were performed, exposing chick embryo brain neurons to BDE209, Se-Met, N-Acetylcysteine (NAC, a ROS inhibitor), and RSL3 (a GPX4 inhibitor). We demonstrated that BDE209 induced oxidative stress and ferroptosis in the chicken brain, which mainly manifested as mitochondrial atrophy, cristae breakage, increased Fe2+ and MDA content, decreased antioxidant enzyme activity, and the inhibition of the NRF2/GPX4 signaling pathway in the brain neurons. However, Se-Met supplementation reversed these changes by activating the NRF2/GPX4 pathway, reducing mitochondrial damage, enhancing antioxidant enzyme activity, and alleviating ferroptosis. This study provides insight into the mechanism of BDE209-related neurotoxicity and suggests Se-Met as an effective preventative and control measure against BDE209 poisoning.
科研通智能强力驱动
Strongly Powered by AbleSci AI