Prediction of Effectiveness and Toxicities of Immune Checkpoint Inhibitors Using Real-World Patient Data

医学 队列 特征选择 肺炎 随机森林 内科学 机器学习 肿瘤科 癌症 人工智能 计算机科学
作者
Levente Lippenszky,Kathleen F. Mittendorf,Zoltán Kiss,Michele L. Lenoue-Newton,Pablo Napan-Molina,Protiva Rahman,Cheng Ye,Balázs Laczi,Eszter Csernai,Neha Jain,Marilyn Holt,C. Noel Maxwell,Madeleine Ball,Yufang Ma,Margaret B. Mitchell,Douglas B. Johnson,David S. Smith,Ben Ho Park,Christine Micheel,Daniel Fabbri,Jan Wolber,Travis Osterman
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (8) 被引量:8
标识
DOI:10.1200/cci.23.00207
摘要

PURPOSE Although immune checkpoint inhibitors (ICIs) have improved outcomes in certain patients with cancer, they can also cause life-threatening immunotoxicities. Predicting immunotoxicity risks alongside response could provide a personalized risk-benefit profile, inform therapeutic decision making, and improve clinical trial cohort selection. We aimed to build a machine learning (ML) framework using routine electronic health record (EHR) data to predict hepatitis, colitis, pneumonitis, and 1-year overall survival. METHODS Real-world EHR data of more than 2,200 patients treated with ICI through December 31, 2018, were used to develop predictive models. Using a prediction time point of ICI initiation, a 1-year prediction time window was applied to create binary labels for the four outcomes for each patient. Feature engineering involved aggregating laboratory measurements over appropriate time windows (60-365 days). Patients were randomly partitioned into training (80%) and test (20%) sets. Random forest classifiers were developed using a rigorous model development framework. RESULTS The patient cohort had a median age of 63 years and was 61.8% male. Patients predominantly had melanoma (37.8%), lung cancer (27.3%), or genitourinary cancer (16.4%). They were treated with PD-1 (60.4%), PD-L1 (9.0%), and CTLA-4 (19.7%) ICIs. Our models demonstrate reasonably strong performance, with AUCs of 0.739, 0.729, 0.755, and 0.752 for the pneumonitis, hepatitis, colitis, and 1-year overall survival models, respectively. Each model relies on an outcome-specific feature set, though some features are shared among models. CONCLUSION To our knowledge, this is the first ML solution that assesses individual ICI risk-benefit profiles based predominantly on routine structured EHR data. As such, use of our ML solution will not require additional data collection or documentation in the clinic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mofeik发布了新的文献求助10
1秒前
Hou完成签到 ,获得积分10
1秒前
1秒前
认真小鸽子完成签到,获得积分20
2秒前
小白不白发布了新的文献求助10
2秒前
Zong发布了新的文献求助10
2秒前
2秒前
独特的追命应助neveruary采纳,获得30
3秒前
雪松发布了新的文献求助20
3秒前
白小白完成签到,获得积分10
3秒前
付研琪发布了新的文献求助10
4秒前
dew应助fzzf采纳,获得10
4秒前
科研仙人发布了新的文献求助10
5秒前
尽舜尧完成签到,获得积分10
5秒前
正直听芹完成签到,获得积分10
6秒前
美满的紫伊完成签到,获得积分10
6秒前
7秒前
Niuniu发布了新的文献求助10
8秒前
水星完成签到 ,获得积分10
8秒前
领导范儿应助生动的水池采纳,获得10
8秒前
8秒前
Akim应助爱学术的小冷采纳,获得10
8秒前
8秒前
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
贺兰觿完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
12秒前
王明磊完成签到 ,获得积分10
13秒前
领导范儿应助别说话采纳,获得10
13秒前
14秒前
25上岸完成签到,获得积分10
14秒前
元谷雪发布了新的文献求助10
15秒前
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695408
求助须知:如何正确求助?哪些是违规求助? 5101761
关于积分的说明 15216105
捐赠科研通 4851704
什么是DOI,文献DOI怎么找? 2602676
邀请新用户注册赠送积分活动 1554320
关于科研通互助平台的介绍 1512360