Prediction of Effectiveness and Toxicities of Immune Checkpoint Inhibitors Using Real-World Patient Data

医学 队列 特征选择 肺炎 随机森林 内科学 机器学习 肿瘤科 癌症 人工智能 计算机科学
作者
Levente Lippenszky,Kathleen F. Mittendorf,Zoltán Kiss,Michele L. Lenoue-Newton,Pablo Napan-Molina,Protiva Rahman,Cheng Ye,Balázs Laczi,Eszter Csernai,Neha Jain,Marilyn Holt,C. Noel Maxwell,Madeleine Ball,Yufang Ma,Margaret B. Mitchell,Douglas B. Johnson,David S. Smith,Ben Ho Park,Christine Micheel,Daniel Fabbri,Jan Wolber,Travis Osterman
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (8) 被引量:8
标识
DOI:10.1200/cci.23.00207
摘要

PURPOSE Although immune checkpoint inhibitors (ICIs) have improved outcomes in certain patients with cancer, they can also cause life-threatening immunotoxicities. Predicting immunotoxicity risks alongside response could provide a personalized risk-benefit profile, inform therapeutic decision making, and improve clinical trial cohort selection. We aimed to build a machine learning (ML) framework using routine electronic health record (EHR) data to predict hepatitis, colitis, pneumonitis, and 1-year overall survival. METHODS Real-world EHR data of more than 2,200 patients treated with ICI through December 31, 2018, were used to develop predictive models. Using a prediction time point of ICI initiation, a 1-year prediction time window was applied to create binary labels for the four outcomes for each patient. Feature engineering involved aggregating laboratory measurements over appropriate time windows (60-365 days). Patients were randomly partitioned into training (80%) and test (20%) sets. Random forest classifiers were developed using a rigorous model development framework. RESULTS The patient cohort had a median age of 63 years and was 61.8% male. Patients predominantly had melanoma (37.8%), lung cancer (27.3%), or genitourinary cancer (16.4%). They were treated with PD-1 (60.4%), PD-L1 (9.0%), and CTLA-4 (19.7%) ICIs. Our models demonstrate reasonably strong performance, with AUCs of 0.739, 0.729, 0.755, and 0.752 for the pneumonitis, hepatitis, colitis, and 1-year overall survival models, respectively. Each model relies on an outcome-specific feature set, though some features are shared among models. CONCLUSION To our knowledge, this is the first ML solution that assesses individual ICI risk-benefit profiles based predominantly on routine structured EHR data. As such, use of our ML solution will not require additional data collection or documentation in the clinic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ccm发布了新的文献求助10
刚刚
刚刚
刚刚
旷野发布了新的文献求助10
1秒前
张巨锋发布了新的文献求助10
1秒前
2秒前
Zzzjjj123发布了新的文献求助10
2秒前
东东发布了新的文献求助10
2秒前
3秒前
说不得大师完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
曾经寄真发布了新的文献求助10
4秒前
apathy完成签到,获得积分10
5秒前
852应助万物可爱采纳,获得10
6秒前
Moonkiss发布了新的文献求助10
6秒前
上官若男应助哈皮采纳,获得10
6秒前
7秒前
曹志毅发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
treasure发布了新的文献求助20
7秒前
8秒前
幻翎发布了新的文献求助30
8秒前
热情的笑白完成签到,获得积分10
8秒前
张不张完成签到,获得积分10
9秒前
lu完成签到,获得积分10
10秒前
Fanzhijuan完成签到,获得积分10
10秒前
10秒前
李健的小迷弟应助123321采纳,获得10
11秒前
一只半夏发布了新的文献求助10
12秒前
曹志毅完成签到,获得积分10
12秒前
12秒前
mly发布了新的文献求助10
12秒前
烟花应助熊22采纳,获得10
12秒前
Owen应助黄油可颂采纳,获得10
12秒前
今后应助tuiiao采纳,获得10
13秒前
asdfzxcv应助东东采纳,获得10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656732
求助须知:如何正确求助?哪些是违规求助? 4805515
关于积分的说明 15077205
捐赠科研通 4814935
什么是DOI,文献DOI怎么找? 2576202
邀请新用户注册赠送积分活动 1531417
关于科研通互助平台的介绍 1490012