亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of Effectiveness and Toxicities of Immune Checkpoint Inhibitors Using Real-World Patient Data

医学 队列 特征选择 肺炎 随机森林 内科学 机器学习 肿瘤科 癌症 人工智能 计算机科学
作者
Levente Lippenszky,Kathleen F. Mittendorf,Zoltán Kiss,Michele L. Lenoue-Newton,Pablo Napan-Molina,Protiva Rahman,Cheng Ye,Balázs Laczi,Eszter Csernai,Neha Jain,Marilyn Holt,C. Noel Maxwell,Madeleine Ball,Yufang Ma,Margaret B. Mitchell,Douglas B. Johnson,David S. Smith,Ben Ho Park,Christine Micheel,Daniel Fabbri,Jan Wolber,Travis Osterman
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (8) 被引量:8
标识
DOI:10.1200/cci.23.00207
摘要

PURPOSE Although immune checkpoint inhibitors (ICIs) have improved outcomes in certain patients with cancer, they can also cause life-threatening immunotoxicities. Predicting immunotoxicity risks alongside response could provide a personalized risk-benefit profile, inform therapeutic decision making, and improve clinical trial cohort selection. We aimed to build a machine learning (ML) framework using routine electronic health record (EHR) data to predict hepatitis, colitis, pneumonitis, and 1-year overall survival. METHODS Real-world EHR data of more than 2,200 patients treated with ICI through December 31, 2018, were used to develop predictive models. Using a prediction time point of ICI initiation, a 1-year prediction time window was applied to create binary labels for the four outcomes for each patient. Feature engineering involved aggregating laboratory measurements over appropriate time windows (60-365 days). Patients were randomly partitioned into training (80%) and test (20%) sets. Random forest classifiers were developed using a rigorous model development framework. RESULTS The patient cohort had a median age of 63 years and was 61.8% male. Patients predominantly had melanoma (37.8%), lung cancer (27.3%), or genitourinary cancer (16.4%). They were treated with PD-1 (60.4%), PD-L1 (9.0%), and CTLA-4 (19.7%) ICIs. Our models demonstrate reasonably strong performance, with AUCs of 0.739, 0.729, 0.755, and 0.752 for the pneumonitis, hepatitis, colitis, and 1-year overall survival models, respectively. Each model relies on an outcome-specific feature set, though some features are shared among models. CONCLUSION To our knowledge, this is the first ML solution that assesses individual ICI risk-benefit profiles based predominantly on routine structured EHR data. As such, use of our ML solution will not require additional data collection or documentation in the clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
8秒前
25秒前
量子星尘发布了新的文献求助10
29秒前
30秒前
45秒前
上官若男应助石榴汁的书采纳,获得10
46秒前
1分钟前
1分钟前
momoko180发布了新的文献求助10
1分钟前
1分钟前
1分钟前
xxx完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
天天快乐应助momoko180采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Orange应助经钧采纳,获得10
3分钟前
waleedo2020发布了新的文献求助10
3分钟前
waleedo2020完成签到,获得积分10
4分钟前
4分钟前
燕燕于飞完成签到,获得积分10
4分钟前
4分钟前
orixero应助Marciu33采纳,获得10
4分钟前
5分钟前
5分钟前
经钧发布了新的文献求助10
5分钟前
斯文败类应助科研小趴菜采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
小倒霉蛋完成签到 ,获得积分10
6分钟前
胡可完成签到 ,获得积分10
6分钟前
领导范儿应助高高的绿蓉采纳,获得30
6分钟前
微卫星不稳定完成签到 ,获得积分0
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418344
求助须知:如何正确求助?哪些是违规求助? 4534108
关于积分的说明 14143089
捐赠科研通 4450330
什么是DOI,文献DOI怎么找? 2441161
邀请新用户注册赠送积分活动 1432939
关于科研通互助平台的介绍 1410269