Prediction of Effectiveness and Toxicities of Immune Checkpoint Inhibitors Using Real-World Patient Data

医学 队列 特征选择 肺炎 随机森林 内科学 机器学习 肿瘤科 癌症 人工智能 计算机科学
作者
Levente Lippenszky,Kathleen F. Mittendorf,Zoltán Kiss,Michele L. Lenoue-Newton,Pablo Napan-Molina,Protiva Rahman,Cheng Ye,Balázs Laczi,Eszter Csernai,Neha Jain,Marilyn Holt,C. Noel Maxwell,Madeleine Ball,Yufang Ma,Margaret B. Mitchell,Douglas B. Johnson,David S. Smith,Ben Ho Park,Christine Micheel,Daniel Fabbri,Jan Wolber,Travis Osterman
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (8) 被引量:8
标识
DOI:10.1200/cci.23.00207
摘要

PURPOSE Although immune checkpoint inhibitors (ICIs) have improved outcomes in certain patients with cancer, they can also cause life-threatening immunotoxicities. Predicting immunotoxicity risks alongside response could provide a personalized risk-benefit profile, inform therapeutic decision making, and improve clinical trial cohort selection. We aimed to build a machine learning (ML) framework using routine electronic health record (EHR) data to predict hepatitis, colitis, pneumonitis, and 1-year overall survival. METHODS Real-world EHR data of more than 2,200 patients treated with ICI through December 31, 2018, were used to develop predictive models. Using a prediction time point of ICI initiation, a 1-year prediction time window was applied to create binary labels for the four outcomes for each patient. Feature engineering involved aggregating laboratory measurements over appropriate time windows (60-365 days). Patients were randomly partitioned into training (80%) and test (20%) sets. Random forest classifiers were developed using a rigorous model development framework. RESULTS The patient cohort had a median age of 63 years and was 61.8% male. Patients predominantly had melanoma (37.8%), lung cancer (27.3%), or genitourinary cancer (16.4%). They were treated with PD-1 (60.4%), PD-L1 (9.0%), and CTLA-4 (19.7%) ICIs. Our models demonstrate reasonably strong performance, with AUCs of 0.739, 0.729, 0.755, and 0.752 for the pneumonitis, hepatitis, colitis, and 1-year overall survival models, respectively. Each model relies on an outcome-specific feature set, though some features are shared among models. CONCLUSION To our knowledge, this is the first ML solution that assesses individual ICI risk-benefit profiles based predominantly on routine structured EHR data. As such, use of our ML solution will not require additional data collection or documentation in the clinic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
十三完成签到 ,获得积分10
2秒前
2秒前
给我点光环完成签到,获得积分10
3秒前
月yue发布了新的文献求助10
4秒前
Artorias发布了新的文献求助20
4秒前
4秒前
Wang完成签到,获得积分10
4秒前
5秒前
caiia完成签到,获得积分10
5秒前
迟歌完成签到,获得积分10
5秒前
Son4904发布了新的文献求助30
5秒前
Genius发布了新的文献求助10
6秒前
6秒前
7秒前
ltupup完成签到 ,获得积分10
7秒前
秀丽的盈发布了新的文献求助10
8秒前
8秒前
情怀应助大胆易巧采纳,获得10
9秒前
9秒前
10秒前
10秒前
海绵宝宝发布了新的文献求助10
11秒前
云蓝完成签到 ,获得积分10
11秒前
迟歌发布了新的文献求助10
12秒前
lagom发布了新的文献求助10
12秒前
12秒前
妮儿完成签到,获得积分10
13秒前
14秒前
坦率灵槐应助123采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
辛勤秋双发布了新的文献求助10
15秒前
15秒前
炙热之桃完成签到,获得积分10
16秒前
17秒前
Hello应助饲料批发采纳,获得10
18秒前
波西米亚完成签到,获得积分10
18秒前
18秒前
椰子发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648780
求助须知:如何正确求助?哪些是违规求助? 4776351
关于积分的说明 15045465
捐赠科研通 4807646
什么是DOI,文献DOI怎么找? 2571009
邀请新用户注册赠送积分活动 1527687
关于科研通互助平台的介绍 1486590