Prediction of Effectiveness and Toxicities of Immune Checkpoint Inhibitors Using Real-World Patient Data

医学 队列 特征选择 肺炎 随机森林 内科学 机器学习 肿瘤科 癌症 人工智能 计算机科学
作者
Levente Lippenszky,Kathleen F. Mittendorf,Zoltán Kiss,Michele L. Lenoue-Newton,Pablo Napan-Molina,Protiva Rahman,Cheng Ye,Balázs Laczi,Eszter Csernai,Neha Jain,Marilyn Holt,C. Noel Maxwell,Madeleine Ball,Yufang Ma,Margaret B. Mitchell,Douglas B. Johnson,David S. Smith,Ben Ho Park,Christine Micheel,Daniel Fabbri,Jan Wolber,Travis Osterman
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (8) 被引量:8
标识
DOI:10.1200/cci.23.00207
摘要

PURPOSE Although immune checkpoint inhibitors (ICIs) have improved outcomes in certain patients with cancer, they can also cause life-threatening immunotoxicities. Predicting immunotoxicity risks alongside response could provide a personalized risk-benefit profile, inform therapeutic decision making, and improve clinical trial cohort selection. We aimed to build a machine learning (ML) framework using routine electronic health record (EHR) data to predict hepatitis, colitis, pneumonitis, and 1-year overall survival. METHODS Real-world EHR data of more than 2,200 patients treated with ICI through December 31, 2018, were used to develop predictive models. Using a prediction time point of ICI initiation, a 1-year prediction time window was applied to create binary labels for the four outcomes for each patient. Feature engineering involved aggregating laboratory measurements over appropriate time windows (60-365 days). Patients were randomly partitioned into training (80%) and test (20%) sets. Random forest classifiers were developed using a rigorous model development framework. RESULTS The patient cohort had a median age of 63 years and was 61.8% male. Patients predominantly had melanoma (37.8%), lung cancer (27.3%), or genitourinary cancer (16.4%). They were treated with PD-1 (60.4%), PD-L1 (9.0%), and CTLA-4 (19.7%) ICIs. Our models demonstrate reasonably strong performance, with AUCs of 0.739, 0.729, 0.755, and 0.752 for the pneumonitis, hepatitis, colitis, and 1-year overall survival models, respectively. Each model relies on an outcome-specific feature set, though some features are shared among models. CONCLUSION To our knowledge, this is the first ML solution that assesses individual ICI risk-benefit profiles based predominantly on routine structured EHR data. As such, use of our ML solution will not require additional data collection or documentation in the clinic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助Destiny采纳,获得10
刚刚
汉堡包应助小凯采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
jeonghan发布了新的文献求助10
2秒前
霹雳蜗牛发布了新的文献求助10
2秒前
北木南发布了新的文献求助10
3秒前
3秒前
刘子田发布了新的文献求助10
4秒前
左右发布了新的文献求助10
6秒前
7秒前
8秒前
9秒前
迷路曼雁发布了新的文献求助10
10秒前
实力与幸运并存完成签到,获得积分10
10秒前
眠羊发布了新的文献求助10
13秒前
FK7发布了新的文献求助10
13秒前
13秒前
14秒前
16秒前
16秒前
17秒前
蒜香生蚝完成签到 ,获得积分20
17秒前
huxi完成签到 ,获得积分10
18秒前
19秒前
19秒前
FK7完成签到,获得积分10
20秒前
菠萝吹雪发布了新的文献求助10
20秒前
21秒前
简单灵凡发布了新的文献求助10
21秒前
北木南完成签到,获得积分10
21秒前
妮妮完成签到,获得积分10
21秒前
21秒前
pappper完成签到,获得积分10
22秒前
毛毛发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
23秒前
脑洞疼应助曦耀采纳,获得30
24秒前
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633094
求助须知:如何正确求助?哪些是违规求助? 4728561
关于积分的说明 14985128
捐赠科研通 4791070
什么是DOI,文献DOI怎么找? 2558755
邀请新用户注册赠送积分活动 1519164
关于科研通互助平台的介绍 1479502