Prediction of Effectiveness and Toxicities of Immune Checkpoint Inhibitors Using Real-World Patient Data

医学 队列 特征选择 肺炎 随机森林 内科学 机器学习 肿瘤科 癌症 人工智能 计算机科学
作者
Levente Lippenszky,Kathleen F. Mittendorf,Zoltán Kiss,Michele L. Lenoue-Newton,Pablo Napan-Molina,Protiva Rahman,Cheng Ye,Balázs Laczi,Eszter Csernai,Neha Jain,Marilyn Holt,C. Noel Maxwell,Madeleine Ball,Yufang Ma,Margaret B. Mitchell,Douglas B. Johnson,David S. Smith,Ben Ho Park,Christine Micheel,Daniel Fabbri,Jan Wolber,Travis Osterman
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (8) 被引量:8
标识
DOI:10.1200/cci.23.00207
摘要

PURPOSE Although immune checkpoint inhibitors (ICIs) have improved outcomes in certain patients with cancer, they can also cause life-threatening immunotoxicities. Predicting immunotoxicity risks alongside response could provide a personalized risk-benefit profile, inform therapeutic decision making, and improve clinical trial cohort selection. We aimed to build a machine learning (ML) framework using routine electronic health record (EHR) data to predict hepatitis, colitis, pneumonitis, and 1-year overall survival. METHODS Real-world EHR data of more than 2,200 patients treated with ICI through December 31, 2018, were used to develop predictive models. Using a prediction time point of ICI initiation, a 1-year prediction time window was applied to create binary labels for the four outcomes for each patient. Feature engineering involved aggregating laboratory measurements over appropriate time windows (60-365 days). Patients were randomly partitioned into training (80%) and test (20%) sets. Random forest classifiers were developed using a rigorous model development framework. RESULTS The patient cohort had a median age of 63 years and was 61.8% male. Patients predominantly had melanoma (37.8%), lung cancer (27.3%), or genitourinary cancer (16.4%). They were treated with PD-1 (60.4%), PD-L1 (9.0%), and CTLA-4 (19.7%) ICIs. Our models demonstrate reasonably strong performance, with AUCs of 0.739, 0.729, 0.755, and 0.752 for the pneumonitis, hepatitis, colitis, and 1-year overall survival models, respectively. Each model relies on an outcome-specific feature set, though some features are shared among models. CONCLUSION To our knowledge, this is the first ML solution that assesses individual ICI risk-benefit profiles based predominantly on routine structured EHR data. As such, use of our ML solution will not require additional data collection or documentation in the clinic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG64n完成签到,获得积分10
刚刚
刚刚
1秒前
Celine完成签到,获得积分10
1秒前
SWD完成签到,获得积分10
1秒前
会飞的生菜完成签到 ,获得积分10
1秒前
2秒前
2秒前
飞翔的霸天哥应助未知采纳,获得30
2秒前
在水一方应助默默听双采纳,获得10
3秒前
s1mple完成签到,获得积分10
3秒前
3秒前
3秒前
共享精神应助Yoyo采纳,获得10
4秒前
情怀应助指北针采纳,获得10
5秒前
5秒前
失眠鸭完成签到,获得积分10
5秒前
yznfly应助zyx采纳,获得20
5秒前
6秒前
6秒前
贪玩心情发布了新的文献求助10
6秒前
7秒前
坚强的曼雁完成签到,获得积分10
7秒前
jiu完成签到,获得积分10
7秒前
7秒前
大鸣王潮发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
chenjie发布了新的文献求助10
9秒前
等待雅寒完成签到,获得积分10
9秒前
香蕉觅云应助daydreamammaking采纳,获得10
9秒前
科研通AI6应助欢呼的小玉采纳,获得30
9秒前
10秒前
cxyyy完成签到,获得积分10
10秒前
10秒前
结实的元灵完成签到,获得积分10
10秒前
11秒前
哆啦A梦发布了新的文献求助10
11秒前
11秒前
彳亍1117应助gao采纳,获得10
11秒前
文静的柚子完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5523959
求助须知:如何正确求助?哪些是违规求助? 4614601
关于积分的说明 14543506
捐赠科研通 4552337
什么是DOI,文献DOI怎么找? 2494743
邀请新用户注册赠送积分活动 1475510
关于科研通互助平台的介绍 1447207