Prediction of Effectiveness and Toxicities of Immune Checkpoint Inhibitors Using Real-World Patient Data

医学 队列 特征选择 肺炎 随机森林 内科学 机器学习 肿瘤科 癌症 人工智能 计算机科学
作者
Levente Lippenszky,Kathleen F. Mittendorf,Zoltán Kiss,Michele L. Lenoue-Newton,Pablo Napan-Molina,Protiva Rahman,Cheng Ye,Balázs Laczi,Eszter Csernai,Neha Jain,Marilyn Holt,C. Noel Maxwell,Madeleine Ball,Yufang Ma,Margaret B. Mitchell,Douglas B. Johnson,David S. Smith,Ben Ho Park,Christine Micheel,Daniel Fabbri,Jan Wolber,Travis Osterman
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (8) 被引量:8
标识
DOI:10.1200/cci.23.00207
摘要

PURPOSE Although immune checkpoint inhibitors (ICIs) have improved outcomes in certain patients with cancer, they can also cause life-threatening immunotoxicities. Predicting immunotoxicity risks alongside response could provide a personalized risk-benefit profile, inform therapeutic decision making, and improve clinical trial cohort selection. We aimed to build a machine learning (ML) framework using routine electronic health record (EHR) data to predict hepatitis, colitis, pneumonitis, and 1-year overall survival. METHODS Real-world EHR data of more than 2,200 patients treated with ICI through December 31, 2018, were used to develop predictive models. Using a prediction time point of ICI initiation, a 1-year prediction time window was applied to create binary labels for the four outcomes for each patient. Feature engineering involved aggregating laboratory measurements over appropriate time windows (60-365 days). Patients were randomly partitioned into training (80%) and test (20%) sets. Random forest classifiers were developed using a rigorous model development framework. RESULTS The patient cohort had a median age of 63 years and was 61.8% male. Patients predominantly had melanoma (37.8%), lung cancer (27.3%), or genitourinary cancer (16.4%). They were treated with PD-1 (60.4%), PD-L1 (9.0%), and CTLA-4 (19.7%) ICIs. Our models demonstrate reasonably strong performance, with AUCs of 0.739, 0.729, 0.755, and 0.752 for the pneumonitis, hepatitis, colitis, and 1-year overall survival models, respectively. Each model relies on an outcome-specific feature set, though some features are shared among models. CONCLUSION To our knowledge, this is the first ML solution that assesses individual ICI risk-benefit profiles based predominantly on routine structured EHR data. As such, use of our ML solution will not require additional data collection or documentation in the clinic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能干雁凡发布了新的文献求助10
1秒前
隐形曼青应助uuuu采纳,获得10
1秒前
打打应助bingsu108采纳,获得30
2秒前
600完成签到,获得积分10
2秒前
赘婿应助111采纳,获得10
2秒前
3秒前
赘婿应助小田采纳,获得10
4秒前
NaN应助hyPang采纳,获得10
5秒前
研友_VZG7GZ应助zaaaz采纳,获得30
5秒前
5秒前
5秒前
王张李高完成签到,获得积分20
5秒前
义气冥茗完成签到,获得积分10
6秒前
科研通AI6应助windy7采纳,获得10
6秒前
6秒前
Urologyzz发布了新的文献求助10
6秒前
zm发布了新的文献求助10
7秒前
oqhg完成签到,获得积分10
7秒前
DA发布了新的文献求助10
8秒前
桐桐应助陈进采纳,获得10
9秒前
Ava应助似冲采纳,获得10
9秒前
11秒前
11秒前
11秒前
mistletoe发布了新的文献求助10
11秒前
12秒前
Urologyzz完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
14秒前
半山完成签到,获得积分10
14秒前
15秒前
ZeroYearN完成签到,获得积分10
15秒前
15秒前
CIXI发布了新的文献求助10
16秒前
Juli发布了新的文献求助10
16秒前
zm关闭了zm文献求助
16秒前
demia发布了新的文献求助10
17秒前
zoey完成签到,获得积分20
17秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582755
求助须知:如何正确求助?哪些是违规求助? 4666874
关于积分的说明 14764127
捐赠科研通 4608899
什么是DOI,文献DOI怎么找? 2528885
邀请新用户注册赠送积分活动 1498196
关于科研通互助平台的介绍 1466887