Prediction of Effectiveness and Toxicities of Immune Checkpoint Inhibitors Using Real-World Patient Data

医学 队列 特征选择 肺炎 随机森林 内科学 机器学习 肿瘤科 癌症 人工智能 计算机科学
作者
Levente Lippenszky,Kathleen F. Mittendorf,Zoltán Kiss,Michele L. Lenoue-Newton,Pablo Napan-Molina,Protiva Rahman,Cheng Ye,Balázs Laczi,Eszter Csernai,Neha Jain,Marilyn Holt,C. Noel Maxwell,Madeleine Ball,Yufang Ma,Margaret B. Mitchell,Douglas B. Johnson,David S. Smith,Ben Ho Park,Christine Micheel,Daniel Fabbri,Jan Wolber,Travis Osterman
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (8) 被引量:8
标识
DOI:10.1200/cci.23.00207
摘要

PURPOSE Although immune checkpoint inhibitors (ICIs) have improved outcomes in certain patients with cancer, they can also cause life-threatening immunotoxicities. Predicting immunotoxicity risks alongside response could provide a personalized risk-benefit profile, inform therapeutic decision making, and improve clinical trial cohort selection. We aimed to build a machine learning (ML) framework using routine electronic health record (EHR) data to predict hepatitis, colitis, pneumonitis, and 1-year overall survival. METHODS Real-world EHR data of more than 2,200 patients treated with ICI through December 31, 2018, were used to develop predictive models. Using a prediction time point of ICI initiation, a 1-year prediction time window was applied to create binary labels for the four outcomes for each patient. Feature engineering involved aggregating laboratory measurements over appropriate time windows (60-365 days). Patients were randomly partitioned into training (80%) and test (20%) sets. Random forest classifiers were developed using a rigorous model development framework. RESULTS The patient cohort had a median age of 63 years and was 61.8% male. Patients predominantly had melanoma (37.8%), lung cancer (27.3%), or genitourinary cancer (16.4%). They were treated with PD-1 (60.4%), PD-L1 (9.0%), and CTLA-4 (19.7%) ICIs. Our models demonstrate reasonably strong performance, with AUCs of 0.739, 0.729, 0.755, and 0.752 for the pneumonitis, hepatitis, colitis, and 1-year overall survival models, respectively. Each model relies on an outcome-specific feature set, though some features are shared among models. CONCLUSION To our knowledge, this is the first ML solution that assesses individual ICI risk-benefit profiles based predominantly on routine structured EHR data. As such, use of our ML solution will not require additional data collection or documentation in the clinic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
番茄完成签到,获得积分10
1秒前
科研通AI6应助Laneyliu采纳,获得10
1秒前
奔赴发布了新的文献求助10
2秒前
3秒前
隐形曼青应助过时的初柔采纳,获得10
3秒前
复杂的访波完成签到,获得积分20
4秒前
无极微光应助从容芸采纳,获得20
4秒前
犯困的溪南完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
所所应助dophin采纳,获得10
5秒前
田様应助夏辉采纳,获得10
5秒前
领导范儿应助喵喵采纳,获得10
6秒前
胡慧婷完成签到 ,获得积分10
6秒前
李健的小迷弟应助喵喵采纳,获得10
6秒前
完美世界应助喵喵采纳,获得10
6秒前
脑洞疼应助喵喵采纳,获得10
6秒前
嫁接诺贝尔应助喵喵采纳,获得10
6秒前
科研通AI6应助喵喵采纳,获得10
6秒前
小二郎应助喵喵采纳,获得10
6秒前
田様应助喵喵采纳,获得30
6秒前
Orange应助喵喵采纳,获得10
6秒前
丘比特应助喵喵采纳,获得10
6秒前
尘默完成签到,获得积分10
7秒前
7秒前
123发布了新的文献求助10
8秒前
9秒前
Zhuyin发布了新的文献求助30
9秒前
赘婿应助苛帅采纳,获得10
10秒前
研友_wZr5Rn完成签到,获得积分10
11秒前
11秒前
汉堡包应助zh1858f采纳,获得10
11秒前
扶桑发布了新的文献求助10
13秒前
ranj发布了新的文献求助10
13秒前
15秒前
X_X发布了新的文献求助10
15秒前
天天快乐应助小吉麻麻采纳,获得10
15秒前
15秒前
15秒前
lily发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630027
求助须知:如何正确求助?哪些是违规求助? 4721552
关于积分的说明 14972362
捐赠科研通 4788123
什么是DOI,文献DOI怎么找? 2556791
邀请新用户注册赠送积分活动 1517752
关于科研通互助平台的介绍 1478367