Prediction of Effectiveness and Toxicities of Immune Checkpoint Inhibitors Using Real-World Patient Data

医学 队列 特征选择 肺炎 随机森林 内科学 机器学习 肿瘤科 癌症 人工智能 计算机科学
作者
Levente Lippenszky,Kathleen F. Mittendorf,Zoltán Kiss,Michele L. Lenoue-Newton,Pablo Napan-Molina,Protiva Rahman,Cheng Ye,Balázs Laczi,Eszter Csernai,Neha Jain,Marilyn Holt,C. Noel Maxwell,Madeleine Ball,Yufang Ma,Margaret B. Mitchell,Douglas B. Johnson,David S. Smith,Ben Ho Park,Christine Micheel,Daniel Fabbri,Jan Wolber,Travis Osterman
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (8) 被引量:8
标识
DOI:10.1200/cci.23.00207
摘要

PURPOSE Although immune checkpoint inhibitors (ICIs) have improved outcomes in certain patients with cancer, they can also cause life-threatening immunotoxicities. Predicting immunotoxicity risks alongside response could provide a personalized risk-benefit profile, inform therapeutic decision making, and improve clinical trial cohort selection. We aimed to build a machine learning (ML) framework using routine electronic health record (EHR) data to predict hepatitis, colitis, pneumonitis, and 1-year overall survival. METHODS Real-world EHR data of more than 2,200 patients treated with ICI through December 31, 2018, were used to develop predictive models. Using a prediction time point of ICI initiation, a 1-year prediction time window was applied to create binary labels for the four outcomes for each patient. Feature engineering involved aggregating laboratory measurements over appropriate time windows (60-365 days). Patients were randomly partitioned into training (80%) and test (20%) sets. Random forest classifiers were developed using a rigorous model development framework. RESULTS The patient cohort had a median age of 63 years and was 61.8% male. Patients predominantly had melanoma (37.8%), lung cancer (27.3%), or genitourinary cancer (16.4%). They were treated with PD-1 (60.4%), PD-L1 (9.0%), and CTLA-4 (19.7%) ICIs. Our models demonstrate reasonably strong performance, with AUCs of 0.739, 0.729, 0.755, and 0.752 for the pneumonitis, hepatitis, colitis, and 1-year overall survival models, respectively. Each model relies on an outcome-specific feature set, though some features are shared among models. CONCLUSION To our knowledge, this is the first ML solution that assesses individual ICI risk-benefit profiles based predominantly on routine structured EHR data. As such, use of our ML solution will not require additional data collection or documentation in the clinic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ikouyo完成签到 ,获得积分10
2秒前
Eternity发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
5秒前
抹茶冰拿铁完成签到,获得积分10
7秒前
Lumos完成签到,获得积分10
7秒前
失眠的向日葵完成签到 ,获得积分10
8秒前
坚定蘑菇发布了新的文献求助10
9秒前
陈秋完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
16秒前
suki完成签到 ,获得积分10
16秒前
今后应助坚定蘑菇采纳,获得10
16秒前
ShishanXue完成签到 ,获得积分10
22秒前
share完成签到 ,获得积分10
24秒前
HY完成签到 ,获得积分10
25秒前
zcm1999完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
31秒前
THEO完成签到,获得积分10
32秒前
搜集达人应助Nancy2023采纳,获得30
35秒前
Lucas应助科研通管家采纳,获得10
41秒前
lyx完成签到 ,获得积分10
45秒前
研友_LmVygn完成签到 ,获得积分10
48秒前
49秒前
扯淡儿完成签到 ,获得积分10
51秒前
XZZ完成签到 ,获得积分10
52秒前
小墨墨完成签到 ,获得积分10
58秒前
李嘻嘻完成签到 ,获得积分10
1分钟前
悦耳的城完成签到 ,获得积分10
1分钟前
wwwwwl完成签到 ,获得积分10
1分钟前
呆呆完成签到 ,获得积分10
1分钟前
无心的天真完成签到 ,获得积分10
1分钟前
xu完成签到 ,获得积分10
1分钟前
1分钟前
JBY完成签到 ,获得积分10
1分钟前
racill完成签到 ,获得积分10
1分钟前
lmm发布了新的文献求助10
1分钟前
Eber完成签到,获得积分10
1分钟前
喵了个咪完成签到 ,获得积分10
1分钟前
海阔天空完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628662
求助须知:如何正确求助?哪些是违规求助? 4718076
关于积分的说明 14964721
捐赠科研通 4786551
什么是DOI,文献DOI怎么找? 2555884
邀请新用户注册赠送积分活动 1517038
关于科研通互助平台的介绍 1477738