已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of Effectiveness and Toxicities of Immune Checkpoint Inhibitors Using Real-World Patient Data

医学 队列 特征选择 肺炎 随机森林 内科学 机器学习 肿瘤科 癌症 人工智能 计算机科学
作者
Levente Lippenszky,Kathleen F. Mittendorf,Zoltán Kiss,Michele L. Lenoue-Newton,Pablo Napan-Molina,Protiva Rahman,Cheng Ye,Balázs Laczi,Eszter Csernai,Neha Jain,Marilyn Holt,C. Noel Maxwell,Madeleine Ball,Yufang Ma,Margaret B. Mitchell,Douglas B. Johnson,David S. Smith,Ben Ho Park,Christine Micheel,Daniel Fabbri,Jan Wolber,Travis Osterman
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (8) 被引量:8
标识
DOI:10.1200/cci.23.00207
摘要

PURPOSE Although immune checkpoint inhibitors (ICIs) have improved outcomes in certain patients with cancer, they can also cause life-threatening immunotoxicities. Predicting immunotoxicity risks alongside response could provide a personalized risk-benefit profile, inform therapeutic decision making, and improve clinical trial cohort selection. We aimed to build a machine learning (ML) framework using routine electronic health record (EHR) data to predict hepatitis, colitis, pneumonitis, and 1-year overall survival. METHODS Real-world EHR data of more than 2,200 patients treated with ICI through December 31, 2018, were used to develop predictive models. Using a prediction time point of ICI initiation, a 1-year prediction time window was applied to create binary labels for the four outcomes for each patient. Feature engineering involved aggregating laboratory measurements over appropriate time windows (60-365 days). Patients were randomly partitioned into training (80%) and test (20%) sets. Random forest classifiers were developed using a rigorous model development framework. RESULTS The patient cohort had a median age of 63 years and was 61.8% male. Patients predominantly had melanoma (37.8%), lung cancer (27.3%), or genitourinary cancer (16.4%). They were treated with PD-1 (60.4%), PD-L1 (9.0%), and CTLA-4 (19.7%) ICIs. Our models demonstrate reasonably strong performance, with AUCs of 0.739, 0.729, 0.755, and 0.752 for the pneumonitis, hepatitis, colitis, and 1-year overall survival models, respectively. Each model relies on an outcome-specific feature set, though some features are shared among models. CONCLUSION To our knowledge, this is the first ML solution that assesses individual ICI risk-benefit profiles based predominantly on routine structured EHR data. As such, use of our ML solution will not require additional data collection or documentation in the clinic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
陈鹿华完成签到 ,获得积分10
5秒前
曹雪峰完成签到,获得积分10
5秒前
5秒前
羊羊完成签到,获得积分10
6秒前
sanner发布了新的文献求助10
6秒前
拉长的迎曼完成签到 ,获得积分10
8秒前
劉浏琉完成签到,获得积分10
10秒前
jiang_tian完成签到,获得积分10
12秒前
思源应助好眠哈密瓜采纳,获得10
12秒前
Lagom完成签到,获得积分10
13秒前
阿俊完成签到 ,获得积分10
14秒前
JamesPei应助细腻的冷卉采纳,获得10
14秒前
16秒前
17秒前
lsc完成签到 ,获得积分10
19秒前
Rocsoar发布了新的文献求助10
20秒前
24秒前
24秒前
彧辰完成签到 ,获得积分10
27秒前
27秒前
ding应助Rocsoar采纳,获得10
28秒前
廖智勇发布了新的文献求助10
29秒前
Feren发布了新的文献求助30
29秒前
呆梨医生完成签到,获得积分10
30秒前
李健应助好眠哈密瓜采纳,获得30
30秒前
顾矜应助专注酸奶采纳,获得10
33秒前
羊羊发布了新的文献求助10
33秒前
小曹发布了新的文献求助10
34秒前
努力地小夏完成签到,获得积分10
35秒前
搞怪的又蓝完成签到,获得积分10
36秒前
FOD完成签到 ,获得积分10
39秒前
Feren完成签到,获得积分10
41秒前
好运来完成签到 ,获得积分10
42秒前
42秒前
44秒前
46秒前
46秒前
BowieHuang应助科研通管家采纳,获得10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723263
求助须知:如何正确求助?哪些是违规求助? 5275470
关于积分的说明 15298353
捐赠科研通 4871863
什么是DOI,文献DOI怎么找? 2616280
邀请新用户注册赠送积分活动 1566091
关于科研通互助平台的介绍 1523007