Prediction of Effectiveness and Toxicities of Immune Checkpoint Inhibitors Using Real-World Patient Data

医学 队列 特征选择 肺炎 随机森林 内科学 机器学习 肿瘤科 癌症 人工智能 计算机科学
作者
Levente Lippenszky,Kathleen F. Mittendorf,Zoltán Kiss,Michele L. Lenoue-Newton,Pablo Napan-Molina,Protiva Rahman,Cheng Ye,Balázs Laczi,Eszter Csernai,Neha Jain,Marilyn Holt,C. Noel Maxwell,Madeleine Ball,Yufang Ma,Margaret B. Mitchell,Douglas B. Johnson,David S. Smith,Ben Ho Park,Christine Micheel,Daniel Fabbri,Jan Wolber,Travis Osterman
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (8) 被引量:8
标识
DOI:10.1200/cci.23.00207
摘要

PURPOSE Although immune checkpoint inhibitors (ICIs) have improved outcomes in certain patients with cancer, they can also cause life-threatening immunotoxicities. Predicting immunotoxicity risks alongside response could provide a personalized risk-benefit profile, inform therapeutic decision making, and improve clinical trial cohort selection. We aimed to build a machine learning (ML) framework using routine electronic health record (EHR) data to predict hepatitis, colitis, pneumonitis, and 1-year overall survival. METHODS Real-world EHR data of more than 2,200 patients treated with ICI through December 31, 2018, were used to develop predictive models. Using a prediction time point of ICI initiation, a 1-year prediction time window was applied to create binary labels for the four outcomes for each patient. Feature engineering involved aggregating laboratory measurements over appropriate time windows (60-365 days). Patients were randomly partitioned into training (80%) and test (20%) sets. Random forest classifiers were developed using a rigorous model development framework. RESULTS The patient cohort had a median age of 63 years and was 61.8% male. Patients predominantly had melanoma (37.8%), lung cancer (27.3%), or genitourinary cancer (16.4%). They were treated with PD-1 (60.4%), PD-L1 (9.0%), and CTLA-4 (19.7%) ICIs. Our models demonstrate reasonably strong performance, with AUCs of 0.739, 0.729, 0.755, and 0.752 for the pneumonitis, hepatitis, colitis, and 1-year overall survival models, respectively. Each model relies on an outcome-specific feature set, though some features are shared among models. CONCLUSION To our knowledge, this is the first ML solution that assesses individual ICI risk-benefit profiles based predominantly on routine structured EHR data. As such, use of our ML solution will not require additional data collection or documentation in the clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张静静完成签到,获得积分10
1秒前
1秒前
震666发布了新的文献求助30
1秒前
MADKAI发布了新的文献求助10
1秒前
1秒前
117发布了新的文献求助10
1秒前
2秒前
2秒前
酶没美镁完成签到,获得积分10
2秒前
小二郎应助Rui采纳,获得10
2秒前
Libra完成签到,获得积分10
3秒前
雪儿发布了新的文献求助30
3秒前
无悔呀发布了新的文献求助10
3秒前
小巧的可仁完成签到 ,获得积分10
3秒前
3秒前
zhao完成签到,获得积分10
4秒前
masu发布了新的文献求助10
4秒前
冷酷尔琴发布了新的文献求助10
5秒前
Ll发布了新的文献求助10
5秒前
优雅山柏完成签到,获得积分10
5秒前
XinyiZhang发布了新的文献求助10
5秒前
小蘑菇应助yangyang采纳,获得10
5秒前
慕青应助欢欢采纳,获得10
6秒前
小憩完成签到,获得积分10
6秒前
南乔发布了新的文献求助10
6秒前
张静静发布了新的文献求助10
7秒前
云儿完成签到,获得积分10
7秒前
淡淡的洋葱完成签到,获得积分10
7秒前
小洲王先生完成签到,获得积分10
8秒前
8秒前
dd完成签到,获得积分10
8秒前
8秒前
9秒前
CCL应助kk2024采纳,获得50
9秒前
wjs0406完成签到,获得积分10
9秒前
自爱悠然发布了新的文献求助10
9秒前
贺雪完成签到,获得积分10
10秒前
10秒前
玉yu发布了新的文献求助10
11秒前
深情秋刀鱼完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740