合作性
氢键
化学
甲醇
乙醇
计算化学
热力学
化学物理
分子
有机化学
物理
生物化学
作者
Arnab Patla,Jagannath Pal,Kanika Guleria,Ranga Subramanian
标识
DOI:10.1080/00268976.2024.2325046
摘要
This study aims to cast light on the nature of hydrogen bonds and their cooperativity that exists in alcohol-water (ROH(H2O)n) (R=−CH3 (−Me), −CH2CH3 (−Et)) (n = 1–10) clusters using atoms in molecules (AIM) theory and symmetry-adapted perturbation theory (SAPT). The investigation of optimum structures suggests that alcohol (ROH) forms two hydrogen bonds, one primary hydrogen bond (O−H⋅⋅⋅O), and one secondary hydrogen bond (C−H⋅⋅⋅O) Two types of hydrogen bonds are addressed in these studies, where alcohol works as the hydrogen bond donor (ROH⋅⋅⋅OH2) and hydrogen bond acceptor (RHO⋅⋅⋅HOH). The AIM results reveal that RHO⋅⋅⋅HOH and ROH⋅⋅⋅OH2 hydrogen bonds are partially covalent. The SAPT study demonstrates that in all the clusters studied herein, the electrostatic interaction between alcohol and water is the main attractive force, and its contribution may be two times larger than the separate corresponding contributions from the dispersion and the induction terms. The electron density (ρ) at the bond critical point (BCP) is a suitable parameter to assess the strength of the interaction. The current study shows the strength and nature of ROH⋅⋅⋅OH2 and RHO⋅⋅⋅HOH hydrogen bond, and cooperative effect in (ROH(H2O)n) (R=−CH3 (−Me), −CH2CH3 (−Et).) (n = 1–10).
科研通智能强力驱动
Strongly Powered by AbleSci AI