CCSFLF: Cloud‐edge‐terminal collaborative self‐adaptive federated learning framework

计算机科学 服务器 云计算 工作量 GSM演进的增强数据速率 终端(电信) 分布式计算 趋同(经济学) 边缘设备 实时计算 人工智能 计算机网络 操作系统 经济 经济增长
作者
Tong Zhou,Yaning Yu,Haonan Yuan,Bing Liu,Hongyang Zhao,Ruijin Wang
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:36 (12)
标识
DOI:10.1002/cpe.8042
摘要

Summary This article addresses the issue of ensuring model accuracy and training efficiency in a constrained federated learning environment. In an actual federated learning environment, each device's software, hardware, and network conditions are heterogeneous. Some terminal devices may not be able to undertake the work assigned by the server, resulting in poor model accuracy and slower convergence speed. However, existing research cannot ensure that each terminal device participating in training can handle the workload allocated by the system without collecting too much equipment information. This article proposes the cloud‐edge‐terminal collaborative self‐adaptive federated learning framework (CCSFLF) to solve this problem. This framework combines the advantages of federated learning and edge computing, reduces the probability that devices cannot handle the workload of system allocation, solves the system heterogeneity, and improves the efficiency of federated learning. CCSFLF can adaptively adjust the number of training tasks for terminal devices and select valuable training participants using a terminal device selection strategy. Multiple edge servers can simultaneously aggregate local models. Cloud servers are responsible for the aggregation and task distribution of global models. The above strategy enables the framework to have a faster convergence rate and higher model accuracy. The experimental results confirm that this framework can reduce the dropout rate of terminal devices by more than 5% in heterogeneous federated learning systems, improve the model accuracy by about 2%, and reduce the training time by 1/3 compared with similar methods, with better performance and applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助0617采纳,获得10
刚刚
Lan完成签到 ,获得积分10
2秒前
2秒前
科研buff完成签到,获得积分10
2秒前
英俊的铭应助气泡水采纳,获得10
3秒前
格非发布了新的文献求助10
3秒前
summy发布了新的文献求助10
3秒前
小小毅1989完成签到 ,获得积分10
5秒前
6秒前
6秒前
Skyeisland完成签到,获得积分10
9秒前
童0731发布了新的文献求助10
10秒前
11秒前
younger004完成签到,获得积分20
11秒前
13秒前
14秒前
开心的鬼神完成签到,获得积分10
15秒前
上进生完成签到,获得积分10
20秒前
科研通AI2S应助124332采纳,获得10
20秒前
21秒前
hmfyl发布了新的文献求助10
21秒前
优美的世开完成签到,获得积分20
22秒前
Elena发布了新的文献求助10
24秒前
童0731完成签到,获得积分10
25秒前
25秒前
深情安青应助科研小白菜采纳,获得10
26秒前
vivi完成签到,获得积分10
28秒前
30秒前
萧水白应助小橘猫采纳,获得10
30秒前
大气时光完成签到,获得积分10
30秒前
木木发布了新的文献求助10
30秒前
小太阳完成签到,获得积分10
31秒前
充电宝应助淼淼采纳,获得10
37秒前
5Cu发布了新的文献求助10
37秒前
ido发布了新的文献求助10
37秒前
sparse_penn完成签到,获得积分10
37秒前
活力翼完成签到 ,获得积分10
37秒前
大力的绿蓉完成签到,获得积分10
37秒前
younger004发布了新的文献求助50
38秒前
KH完成签到,获得积分10
41秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308531
求助须知:如何正确求助?哪些是违规求助? 2941839
关于积分的说明 8506196
捐赠科研通 2616831
什么是DOI,文献DOI怎么找? 1429824
科研通“疑难数据库(出版商)”最低求助积分说明 663928
邀请新用户注册赠送积分活动 649040