海马结构
电休克疗法
神经科学
海马体
心理学
萧条(经济学)
抗抑郁药
转化研究
磁共振成像
神经发生
重性抑郁障碍
机制(生物学)
抑郁症动物模型
医学
认知
病理
哲学
放射科
认识论
经济
宏观经济学
作者
Yoshifumi Abe,Vera Jane Erchinger,Olga Therese Ousdal,Leif Oltedal,Kenji F. Tanaka,Akihiro Takamiya
摘要
Abstract Depression is a highly prevalent and disabling psychiatric disorder. The hippocampus, which plays a central role in mood regulation and memory, has received considerable attention in depression research. Electroconvulsive therapy (ECT) is the most effective treatment for severe pharmacotherapy‐resistant depression. Although the working mechanism of ECT remains unclear, recent magnetic resonance imaging (MRI) studies have consistently reported increased hippocampal volumes following ECT. The clinical implications of these volumetric increases and the specific cellular and molecular significance are not yet fully understood. This narrative review brings together evidence from animal models and human studies to provide a detailed examination of hippocampal volumetric increases following ECT. In particular, our preclinical MRI research using a mouse model is consistent with human findings, demonstrating a marked increase in hippocampal volume following ECT. Notable changes were observed in the ventral hippocampal CA1 region, including dendritic growth and increased synaptic density at excitatory synapses. Interestingly, inhibition of neurogenesis did not affect the ECT‐related hippocampal volumetric increases detected on MRI. However, it remains unclear whether these histological and volumetric changes would be correlated with the clinical effect of ECT. Hence, future research on the relationships between cellular changes, ECT‐related brain volumetric changes, and antidepressant effect could benefit from a bidirectional translational approach that integrates human and animal models. Such translational research may provide important insights into the mechanisms and potential biomarkers associated with ECT‐induced hippocampal volumetric changes, thereby advancing our understanding of ECT for the treatment of depression.
科研通智能强力驱动
Strongly Powered by AbleSci AI