Multi-strategy adaptable ant colony optimization algorithm and its application in robot path planning

蚁群优化算法 运动规划 路径(计算) 计算机科学 数学优化 机器人 人工智能 数学 程序设计语言
作者
Junguo Cui,Lei Wu,Xiaodong Huang,Dengpan Xu,Chao Liu,Wensheng Xiao
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:288: 111459-111459 被引量:13
标识
DOI:10.1016/j.knosys.2024.111459
摘要

As a widely used path planning algorithm, the ant colony optimization algorithm (ACO) has evolved into a well-developed method within the realm of optimization algorithms and has been extensively applied across various fields. In this study, a multi-strategy adaptable ant colony optimization (MsAACO) is proposed to alleviate the insufficient and inefficient convergence of ACO, employing four-design improvements. First, a direction-guidance mechanism is proposed to improve the performance of node selection. Second, an adaptive heuristic function is introduced to decrease the length and number of turns of the optimal path solutions. Moreover, the deterministic state transition probability rule was employed to promote the convergence speed of ACO. Finally, nonuniform pheromone initialization was utilized to enhance the ability of ACO to select advantageous regions. Subsequently, the major parameters of the strategies were optimized and their effectiveness was validated. MsAACO was proposed by combining these four strategies with ACO. To verify the advantages of MsAACO, five representative environment models were employed, and comprehensive experiments were conducted by comparing them with existing approaches, including the A* algorithm, variants of ACO, Dijkstra's algorithm, jump point search algorithm, best-first search, breadth-first search, trace algorithm, and other excellent algorithms. The experimental statistical results demonstrate that MsAACO can efficiently generate smoother optimal path-planning solutions with lower length and turn times and improve the convergence efficiency and stability of ACO compared to other algorithms. The generated results of MsAACO verified its superiority in solving the path-planning problem of mobile robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
巴布鲁斯发布了新的文献求助10
4秒前
ccc完成签到,获得积分10
5秒前
阿米不吃菠菜完成签到 ,获得积分10
5秒前
6秒前
科研小菜完成签到 ,获得积分10
7秒前
zxxx发布了新的文献求助10
10秒前
小二郎应助longliang采纳,获得10
12秒前
CRANE完成签到 ,获得积分10
12秒前
科研通AI2S应助麦子采纳,获得10
12秒前
正霖完成签到,获得积分10
13秒前
小达人完成签到 ,获得积分10
14秒前
叶绿体机智完成签到,获得积分10
14秒前
14秒前
zxc完成签到,获得积分10
14秒前
yayan发布了新的文献求助10
14秒前
葡萄成熟发布了新的文献求助10
15秒前
ahaha完成签到,获得积分10
15秒前
ahaha发布了新的文献求助10
18秒前
小羊完成签到,获得积分10
20秒前
ding应助求助采纳,获得10
20秒前
SciGPT应助bobo采纳,获得10
21秒前
英俊的铭应助sarah采纳,获得20
24秒前
25秒前
25秒前
27秒前
坚定的芷珊完成签到,获得积分10
28秒前
zxxx完成签到,获得积分20
28秒前
28秒前
30秒前
32秒前
32秒前
李健应助专一的书雪采纳,获得10
32秒前
33秒前
33秒前
lalalalal完成签到,获得积分20
33秒前
路过蜻蜓完成签到,获得积分10
35秒前
yayan完成签到,获得积分20
35秒前
wy完成签到,获得积分10
35秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163395
求助须知:如何正确求助?哪些是违规求助? 2814263
关于积分的说明 7904141
捐赠科研通 2473792
什么是DOI,文献DOI怎么找? 1317118
科研通“疑难数据库(出版商)”最低求助积分说明 631625
版权声明 602187