Neural-Net Artificial Pancreas: A Randomized Crossover Trial of a First-in-Class Automated Insulin Delivery Algorithm

午睡 医学 人工胰腺 算法 交叉研究 人工神经网络 糖尿病 随机对照试验 1型糖尿病 机器学习 人工智能 内科学 计算机科学 内分泌学 病理 神经科学 替代医学 生物 安慰剂
作者
Boris Kovatchev,Alberto Castillo,Elliott Pryor,Laura Kollar,Charlotte L. Barnett,Mark D. DeBoer,Sue A. Brown
出处
期刊:Diabetes Technology & Therapeutics [Mary Ann Liebert]
卷期号:26 (6): 375-382 被引量:2
标识
DOI:10.1089/dia.2023.0469
摘要

Background: Automated Insulin Delivery (AID) is now integral to the clinical practice of Type 1 diabetes (T1D). The objective of this pilot-feasibility study was to introduce a new regulatory and clinical paradigm – a Neural-Net Artificial Pancreas (NAP) – an encoding of an AID algorithm into a neural network that approximates its action, and assess NAP vs the original AID algorithm. Methods: The UVA model-predictive control (UMPC) algorithm was encoded into a neural network, creating its NAP approximation. Seventeen AID users with T1D were recruited and 15 participated in two consecutive 20-hour hotel sessions, receiving in random order either NAP or UMPC. Their demographic characteristics were: ages 22-68 years old, duration of diabetes 7-58 years, gender 10/5 female/male, White Non-Hispanic/Black 13/2, and baseline HbA1c 5.4-8.1%. Results: The time-in-range (TIR) difference between NAP and UMPC, adjusted for entry glucose level, was 1 percentage point, with absolute TIR values of 86% (NAP) and 87% (UMPC). The two algorithms achieved similar times <70 mg/dL of 2.0% vs 1.8% and coefficients of variation of 29.3% (NAP) vs 29.1 (UMPC)%. Under identical inputs, the average absolute insulin-recommendation difference was 0.031 units/hour. There were no serious adverse events on either controller. NAP had 6-fold lower computational demands than UMPC. Conclusion: In a randomized crossover study, a neural-network encoding of a complex model-predictive control algorithm demonstrated similar performance, at a fraction of the computational demands. Regulatory and clinical doors are therefore open for contemporary machine learning methods to enter the AID field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助科研通管家采纳,获得10
刚刚
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
健忘的牛排完成签到,获得积分20
刚刚
Orange应助科研通管家采纳,获得10
1秒前
陶陶完成签到,获得积分20
1秒前
无花果应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
精灵夜雨应助科研通管家采纳,获得10
1秒前
七七发布了新的文献求助30
1秒前
1秒前
1秒前
2秒前
2秒前
视野胤发布了新的文献求助10
2秒前
3秒前
ff完成签到,获得积分10
3秒前
乐乐应助哭泣雅绿采纳,获得10
4秒前
等待葵阴完成签到,获得积分20
4秒前
4秒前
顺利煎蛋发布了新的文献求助10
5秒前
等待落雁发布了新的文献求助10
5秒前
爱听歌契发布了新的文献求助10
6秒前
6秒前
刘jinkai发布了新的文献求助10
6秒前
Ava应助健忘的牛排采纳,获得10
6秒前
6秒前
等待葵阴发布了新的文献求助10
8秒前
8秒前
皮蛋完成签到,获得积分10
9秒前
zhang111发布了新的文献求助10
9秒前
123发布了新的文献求助10
9秒前
勤恳元槐发布了新的文献求助10
9秒前
wu完成签到,获得积分10
10秒前
10秒前
千寻完成签到,获得积分10
11秒前
搜集达人应助jia采纳,获得10
11秒前
等待落雁完成签到,获得积分10
13秒前
梅子完成签到,获得积分20
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
Shape Determination of Large Sedimental Rock Fragments 2000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133114
求助须知:如何正确求助?哪些是违规求助? 2784327
关于积分的说明 7765830
捐赠科研通 2439465
什么是DOI,文献DOI怎么找? 1296858
科研通“疑难数据库(出版商)”最低求助积分说明 624757
版权声明 600771