Anchor-Sharing and Clusterwise Contrastive Network for Multiview Representation Learning

判别式 一致性(知识库) 计算机科学 代表(政治) 特征学习 人工智能 聚类分析 特征(语言学) 机器学习 深度学习 模式识别(心理学) 数据挖掘 政治 政治学 法学 语言学 哲学
作者
Weiqing Yan,Yuanyang Zhang,Chang Tang,Wujie Zhou,Weisi Lin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:6
标识
DOI:10.1109/tnnls.2024.3357087
摘要

Multiview clustering (MVC) has gained significant attention as it enables the partitioning of samples into their respective categories through unsupervised learning. However, there are a few issues as follows: 1) many existing deep clustering methods use the same latent features to achieve the conflict objectives, namely, reconstruction and view consistency. The reconstruction objective aims to preserve view-specific features for each individual view, while the view-consistency objective strives to obtain common features across all views; 2) some deep embedded clustering (DEC) approaches adopt view-wise fusion to obtain consensus feature representation. However, these approaches overlook the correlation between samples, making it challenging to derive discriminative consensus representations; and 3) many methods use contrastive learning (CL) to align the view's representations; however, they do not take into account cluster information during the construction of sample pairs, which can lead to the presence of false negative pairs. To address these issues, we propose a novel multiview representation learning network, called anchor-sharing and clusterwise CL (CwCL) network for multiview representation learning. Specifically, we separate view-specific learning and view-common learning into different network branches, which addresses the conflict between reconstruction and consistency. Second, we design an anchor-sharing feature aggregation (ASFA) module, which learns the sharing anchors from different batch data samples, establishes the bipartite relationship between anchors and samples, and further leverages it to improve the samples' representations. This module enhances the discriminative power of the common representation from different samples. Third, we design CwCL module, which incorporates the learned transition probability into CL, allowing us to focus on minimizing the similarity between representations from negative pairs with a low transition probability. It alleviates the conflict in previous sample-level contrastive alignment. Experimental results demonstrate that our method outperforms the state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助温暖的怀蝶采纳,获得10
2秒前
李健应助yangjingcmu采纳,获得10
2秒前
秋作完成签到,获得积分10
3秒前
不可以懒懒完成签到,获得积分10
4秒前
4秒前
PaoPao发布了新的文献求助10
4秒前
lalala发布了新的文献求助10
4秒前
5秒前
JamesPei应助尘闲采纳,获得10
5秒前
崔双艳完成签到,获得积分10
5秒前
FashionBoy应助温乘云采纳,获得10
6秒前
季风气候完成签到 ,获得积分10
6秒前
愤怒的乐松应助yejing采纳,获得10
7秒前
思源应助杨哈哈采纳,获得10
7秒前
需要交流的铅笔完成签到 ,获得积分10
7秒前
7秒前
ily.应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
cocolu应助科研通管家采纳,获得10
7秒前
7秒前
英姑应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
乐乐应助Henry采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
cocolu应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
劲秉应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
中工发布了新的文献求助10
9秒前
ceci完成签到,获得积分10
10秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305153
求助须知:如何正确求助?哪些是违规求助? 2939026
关于积分的说明 8491012
捐赠科研通 2613498
什么是DOI,文献DOI怎么找? 1427461
科研通“疑难数据库(出版商)”最低求助积分说明 663007
邀请新用户注册赠送积分活动 647648