Carbon availability and microbial activity manipulate the temperature sensitivity of anaerobic degradation in a paddy soil profile

问题10 土壤碳 环境科学 二氧化碳 无氧运动 全球变暖 环境化学 土壤水分 农学 土壤科学 化学 气候变化 生态学 生物 植物 呼吸 生理学
作者
Ronglin Su,Xian Wu,Jin‐Li Hu,Huabin Li,Hengbin Xiao,Jinsong Zhao,Ronggui Hu
出处
期刊:Environmental Research [Elsevier]
卷期号:252: 118453-118453 被引量:2
标识
DOI:10.1016/j.envres.2024.118453
摘要

Soil contains a substantial amount of organic carbon, and its feedback to global warming has garnered widespread attention due to its potential to modulate atmospheric carbon (C) storage. Temperature sensitivity (Q10) has been widely utilized as a measure of the temperature-induced enhancement in soil organic carbon (SOC) decomposition. It is currently rare to incorporate Q10 of CO2 and CH4 into the study of waterlogged soil profiles and explore the possibility of artificially reducing Q10 in rice fields. To investigate the key drivers of Q10, we collected 0–1 m paddy soil profiles, and stratified the soil for submerged anaerobic incubation. The relationship between SOC availability, microbial activity, and the Q10 of CO2 and CH4 emissions was examined. Our findings indicate that as the soil layer deepens, soil C availability and microbial activity declined, and the Q10 of anaerobic degradation increased. Warming increased C availability and microbial activity, accompanied by weakened temperature sensitivity. The Q10 of CO2 correlated strongly with soil resistant C components, while the Q10 of CH4 was significantly influenced by labile substrates. The temperature sensitivity of CH4 (Q10 = 3.99) was higher than CO2 emissions (Q10 = 1.78), indicating the need for greater attention of CH4 in predicting warming's impact on anaerobic degradation in rice fields. Comprehensively assessing CO2 and CH4 emissions, the 20–40 cm subsurface soil is the most temperature-sensitive. Despite being a high-risk area for C loss and CH4 emissions, management of this soil layer in agriculture has the potential to reduce the threat of global warming. This study underscores the importance of subsurface soil in paddy fields, advocating greater attention in scientific simulations and predictions of climate change.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静妙菡完成签到,获得积分10
1秒前
1秒前
蛙趣发布了新的文献求助10
2秒前
pwang_ecust完成签到,获得积分10
3秒前
机智的锦程完成签到 ,获得积分10
4秒前
5秒前
zjw完成签到,获得积分10
5秒前
6秒前
科研通AI5应助南城雨落采纳,获得10
6秒前
XNM完成签到,获得积分10
6秒前
8秒前
小花小宝和阿飞完成签到 ,获得积分10
9秒前
无脚鸟完成签到,获得积分10
9秒前
微笑冰棍完成签到 ,获得积分10
10秒前
Aurora完成签到 ,获得积分10
11秒前
灰灰喵完成签到 ,获得积分10
12秒前
戚雅柔完成签到 ,获得积分10
12秒前
13秒前
ccx完成签到,获得积分10
13秒前
俭朴新之完成签到 ,获得积分10
15秒前
popcoming完成签到,获得积分10
16秒前
Dreamer完成签到,获得积分10
16秒前
Jenny发布了新的文献求助200
18秒前
哇哈哈哈哈哈完成签到,获得积分10
18秒前
18秒前
20秒前
FashionBoy应助你知道的采纳,获得10
20秒前
请叫我鬼才完成签到,获得积分10
21秒前
那时年少完成签到,获得积分10
21秒前
scinature完成签到,获得积分10
22秒前
安详的代容完成签到 ,获得积分10
22秒前
fy完成签到,获得积分10
22秒前
芝麻完成签到,获得积分10
23秒前
系统提示完成签到,获得积分10
24秒前
24秒前
个性的语山完成签到,获得积分10
25秒前
27秒前
甜晞完成签到,获得积分10
28秒前
yue完成签到,获得积分10
29秒前
等待断秋完成签到,获得积分10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526671
求助须知:如何正确求助?哪些是违规求助? 3107025
关于积分的说明 9282303
捐赠科研通 2804743
什么是DOI,文献DOI怎么找? 1539568
邀请新用户注册赠送积分活动 716616
科研通“疑难数据库(出版商)”最低求助积分说明 709588