亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Discovery of distinct cancer cachexia phenotypes using an unsupervised machine-learning algorithm

恶病质 医学 观察研究 癌症 聚类分析 队列 内科学 比例危险模型 逻辑回归 人体测量学 生存分析 肿瘤科 机器学习 计算机科学
作者
Hao-Fan Wu,Jiangpeng Yan,Qian Wu,Zhen Yu,Hongxia Xu,Song Chunhua,Zengqing Guo,Wei Li,Yan‐Jun Xiang,Zhe Xu,Jie Luo,Shuqun Cheng,Feng‐Min Zhang,Hanping Shi,Cheng-Le Zhuang
出处
期刊:Nutrition [Elsevier]
卷期号:119: 112317-112317 被引量:4
标识
DOI:10.1016/j.nut.2023.112317
摘要

Cancer cachexia is a debilitating condition with widespread negative effects. The heterogeneity of clinical features within patients with cancer cachexia is unclear. The identification and prognostic analysis of diverse phenotypes of cancer cachexia may help develop individualized interventions to improve outcomes for vulnerable populations. The aim of this study was to show that the machine learning–based cancer cachexia classification model generalized well on the external validation cohort. This was a nationwide multicenter observational study conducted from October 2012 to April 2021 in China. Unsupervised consensus clustering analysis was applied based on demographic, anthropometric, nutritional, oncological, and quality-of-life data. Key characteristics of each cluster were identified using the standardized mean difference. We used logistic and Cox regression analysis to evaluate 1-, 3-, 5-y, and overall mortality. A consensus clustering algorithm was performed for 4329 patients with cancer cachexia in the discovery cohort, and four clusters with distinct phenotypes were uncovered. From clusters 1 to 4, the clinical characteristics of patients showed a transition from almost unimpaired to mildly, moderately, and severely impaired. Consistently, an increase in mortality from clusters 1 to 4 was observed. The overall mortality rate was 32%, 40%, 54%, and 68%, and the median overall survival time was 21.9, 18, 16.7, and 13.6 mo for patients in clusters 1 to 4, respectively. Our machine learning-based model performed better in predicting mortality than the traditional model. External validation confirmed the above results. Machine learning is valuable for phenotype classifications of patients with cancer cachexia. Detection of clinically distinct clusters among cachexic patients assists in scheduling personalized treatment strategies and in patient selection for clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
发发发布了新的文献求助10
2秒前
zlzlzte完成签到 ,获得积分10
2秒前
彭于晏应助耕云钓月采纳,获得10
3秒前
6秒前
LJL完成签到 ,获得积分10
7秒前
xzhang55完成签到,获得积分10
8秒前
Sneijder10发布了新的文献求助10
10秒前
真实的咖啡豆完成签到 ,获得积分10
15秒前
Criminology34应助科研通管家采纳,获得10
18秒前
18秒前
Criminology34应助科研通管家采纳,获得10
19秒前
19秒前
Criminology34应助科研通管家采纳,获得30
19秒前
Criminology34应助科研通管家采纳,获得20
19秒前
19秒前
Mufreh应助科研通管家采纳,获得20
19秒前
科研通AI6.1应助9202211125采纳,获得30
27秒前
科研通AI6.1应助Sneijder10采纳,获得10
29秒前
30秒前
ylh发布了新的文献求助10
34秒前
Ghiocel完成签到,获得积分10
34秒前
37秒前
耕云钓月发布了新的文献求助10
37秒前
40秒前
9202211125发布了新的文献求助10
40秒前
NINGMUG关注了科研通微信公众号
41秒前
44秒前
remember发布了新的文献求助10
47秒前
量子星尘发布了新的文献求助10
50秒前
CodeCraft应助remember采纳,获得10
53秒前
江夏清完成签到,获得积分10
55秒前
糖配坤完成签到 ,获得积分10
57秒前
Grace完成签到 ,获得积分10
1分钟前
希望天下0贩的0应助SSY采纳,获得10
1分钟前
Lusteri完成签到 ,获得积分10
1分钟前
科目三应助追寻友桃采纳,获得10
1分钟前
ylh完成签到,获得积分10
1分钟前
wisher完成签到 ,获得积分10
1分钟前
mz完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772479
求助须知:如何正确求助?哪些是违规求助? 5598976
关于积分的说明 15429712
捐赠科研通 4905414
什么是DOI,文献DOI怎么找? 2639398
邀请新用户注册赠送积分活动 1587319
关于科研通互助平台的介绍 1542182