Discovery of distinct cancer cachexia phenotypes using an unsupervised machine-learning algorithm

恶病质 医学 观察研究 癌症 聚类分析 队列 内科学 比例危险模型 逻辑回归 人体测量学 生存分析 肿瘤科 机器学习 计算机科学
作者
Hao-Fan Wu,Jiangpeng Yan,Qian Wu,Zhen Yu,Hongxia Xu,Song Chunhua,Zengqing Guo,Wei Li,Yan‐Jun Xiang,Zhe Xu,Jie Luo,Shuqun Cheng,Feng‐Min Zhang,Hanping Shi,Cheng-Le Zhuang
出处
期刊:Nutrition [Elsevier]
卷期号:119: 112317-112317 被引量:3
标识
DOI:10.1016/j.nut.2023.112317
摘要

Cancer cachexia is a debilitating condition with widespread negative effects. The heterogeneity of clinical features within patients with cancer cachexia is unclear. The identification and prognostic analysis of diverse phenotypes of cancer cachexia may help develop individualized interventions to improve outcomes for vulnerable populations. The aim of this study was to show that the machine learning–based cancer cachexia classification model generalized well on the external validation cohort. This was a nationwide multicenter observational study conducted from October 2012 to April 2021 in China. Unsupervised consensus clustering analysis was applied based on demographic, anthropometric, nutritional, oncological, and quality-of-life data. Key characteristics of each cluster were identified using the standardized mean difference. We used logistic and Cox regression analysis to evaluate 1-, 3-, 5-y, and overall mortality. A consensus clustering algorithm was performed for 4329 patients with cancer cachexia in the discovery cohort, and four clusters with distinct phenotypes were uncovered. From clusters 1 to 4, the clinical characteristics of patients showed a transition from almost unimpaired to mildly, moderately, and severely impaired. Consistently, an increase in mortality from clusters 1 to 4 was observed. The overall mortality rate was 32%, 40%, 54%, and 68%, and the median overall survival time was 21.9, 18, 16.7, and 13.6 mo for patients in clusters 1 to 4, respectively. Our machine learning-based model performed better in predicting mortality than the traditional model. External validation confirmed the above results. Machine learning is valuable for phenotype classifications of patients with cancer cachexia. Detection of clinically distinct clusters among cachexic patients assists in scheduling personalized treatment strategies and in patient selection for clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
羊洋洋完成签到,获得积分20
1秒前
情怀应助Ee采纳,获得10
1秒前
2秒前
2秒前
3秒前
冰糖炬雪梨完成签到,获得积分10
3秒前
黄hhh发布了新的文献求助10
4秒前
buno应助牛马采纳,获得10
4秒前
5秒前
5秒前
嘻嘻发布了新的文献求助10
5秒前
青柠发布了新的文献求助10
6秒前
6秒前
求学发布了新的文献求助10
6秒前
苹果牌牛仔裤完成签到,获得积分10
7秒前
7秒前
太清发布了新的文献求助10
7秒前
传奇3应助CH采纳,获得10
8秒前
我是老大应助Galato采纳,获得10
8秒前
8秒前
9秒前
吞吞发布了新的文献求助10
10秒前
Asteria发布了新的文献求助10
10秒前
Frank应助刘凯采纳,获得10
11秒前
陈陈陈完成签到,获得积分10
11秒前
11秒前
科研通AI2S应助111采纳,获得10
12秒前
shunshun51213完成签到,获得积分10
13秒前
烂漫怀亦发布了新的文献求助10
13秒前
开朗的觅柔完成签到,获得积分10
13秒前
FayFoo发布了新的文献求助80
13秒前
听星伴月发布了新的文献求助10
13秒前
y13333完成签到,获得积分10
13秒前
天天快乐应助太清采纳,获得10
14秒前
赘婿应助ling采纳,获得10
15秒前
16秒前
Zzz完成签到,获得积分10
17秒前
ccm应助稳重岩采纳,获得10
17秒前
BowieHuang应助无心的薄荷采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572695
求助须知:如何正确求助?哪些是违规求助? 4658592
关于积分的说明 14722423
捐赠科研通 4598545
什么是DOI,文献DOI怎么找? 2523879
邀请新用户注册赠送积分活动 1494533
关于科研通互助平台的介绍 1464586