Discovery of distinct cancer cachexia phenotypes using an unsupervised machine-learning algorithm

恶病质 医学 观察研究 癌症 聚类分析 队列 内科学 比例危险模型 逻辑回归 人体测量学 生存分析 肿瘤科 机器学习 计算机科学
作者
Hao-Fan Wu,Jiangpeng Yan,Qian Wu,Zhen Yu,Hongxia Xu,Song Chunhua,Zengqing Guo,Wei Li,Yan‐Jun Xiang,Zhe Xu,Jie Luo,Shuqun Cheng,Feng‐Min Zhang,Hanping Shi,Cheng-Le Zhuang
出处
期刊:Nutrition [Elsevier BV]
卷期号:119: 112317-112317 被引量:3
标识
DOI:10.1016/j.nut.2023.112317
摘要

Cancer cachexia is a debilitating condition with widespread negative effects. The heterogeneity of clinical features within patients with cancer cachexia is unclear. The identification and prognostic analysis of diverse phenotypes of cancer cachexia may help develop individualized interventions to improve outcomes for vulnerable populations. The aim of this study was to show that the machine learning–based cancer cachexia classification model generalized well on the external validation cohort. This was a nationwide multicenter observational study conducted from October 2012 to April 2021 in China. Unsupervised consensus clustering analysis was applied based on demographic, anthropometric, nutritional, oncological, and quality-of-life data. Key characteristics of each cluster were identified using the standardized mean difference. We used logistic and Cox regression analysis to evaluate 1-, 3-, 5-y, and overall mortality. A consensus clustering algorithm was performed for 4329 patients with cancer cachexia in the discovery cohort, and four clusters with distinct phenotypes were uncovered. From clusters 1 to 4, the clinical characteristics of patients showed a transition from almost unimpaired to mildly, moderately, and severely impaired. Consistently, an increase in mortality from clusters 1 to 4 was observed. The overall mortality rate was 32%, 40%, 54%, and 68%, and the median overall survival time was 21.9, 18, 16.7, and 13.6 mo for patients in clusters 1 to 4, respectively. Our machine learning-based model performed better in predicting mortality than the traditional model. External validation confirmed the above results. Machine learning is valuable for phenotype classifications of patients with cancer cachexia. Detection of clinically distinct clusters among cachexic patients assists in scheduling personalized treatment strategies and in patient selection for clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助yankai采纳,获得10
1秒前
aa发布了新的文献求助10
1秒前
Daisy123k完成签到,获得积分10
1秒前
2秒前
萝卜啃菠萝应助木头人采纳,获得100
2秒前
beichuanheqi完成签到,获得积分10
2秒前
懒觉大王完成签到,获得积分10
3秒前
七月发布了新的文献求助10
3秒前
joinn发布了新的文献求助10
3秒前
山川发布了新的文献求助10
4秒前
4秒前
4秒前
李健的小迷弟应助小菲采纳,获得10
5秒前
李新悦完成签到,获得积分10
5秒前
大树完成签到 ,获得积分10
5秒前
佳丽发布了新的文献求助30
5秒前
boxi完成签到,获得积分10
5秒前
6秒前
小书虫完成签到,获得积分20
6秒前
Rondab应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
山海之间完成签到,获得积分10
7秒前
kekong应助科研通管家采纳,获得10
7秒前
liubaibai2333发布了新的文献求助10
7秒前
Rondab应助科研通管家采纳,获得10
7秒前
Rondab应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
Rondab应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
Tomin发布了新的文献求助10
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009765
求助须知:如何正确求助?哪些是违规求助? 3549723
关于积分的说明 11303208
捐赠科研通 3284239
什么是DOI,文献DOI怎么找? 1810545
邀请新用户注册赠送积分活动 886356
科研通“疑难数据库(出版商)”最低求助积分说明 811355