Discovery of distinct cancer cachexia phenotypes using an unsupervised machine-learning algorithm

恶病质 医学 观察研究 癌症 聚类分析 队列 内科学 比例危险模型 逻辑回归 人体测量学 生存分析 肿瘤科 机器学习 计算机科学
作者
Hao-Fan Wu,Jiangpeng Yan,Qian Wu,Zhen Yu,Hongxia Xu,Song Chunhua,Zengqing Guo,Wei Li,Yan‐Jun Xiang,Zhe Xu,Jie Luo,Shuqun Cheng,Feng‐Min Zhang,Hanping Shi,Cheng-Le Zhuang
出处
期刊:Nutrition [Elsevier]
卷期号:119: 112317-112317 被引量:4
标识
DOI:10.1016/j.nut.2023.112317
摘要

Cancer cachexia is a debilitating condition with widespread negative effects. The heterogeneity of clinical features within patients with cancer cachexia is unclear. The identification and prognostic analysis of diverse phenotypes of cancer cachexia may help develop individualized interventions to improve outcomes for vulnerable populations. The aim of this study was to show that the machine learning–based cancer cachexia classification model generalized well on the external validation cohort. This was a nationwide multicenter observational study conducted from October 2012 to April 2021 in China. Unsupervised consensus clustering analysis was applied based on demographic, anthropometric, nutritional, oncological, and quality-of-life data. Key characteristics of each cluster were identified using the standardized mean difference. We used logistic and Cox regression analysis to evaluate 1-, 3-, 5-y, and overall mortality. A consensus clustering algorithm was performed for 4329 patients with cancer cachexia in the discovery cohort, and four clusters with distinct phenotypes were uncovered. From clusters 1 to 4, the clinical characteristics of patients showed a transition from almost unimpaired to mildly, moderately, and severely impaired. Consistently, an increase in mortality from clusters 1 to 4 was observed. The overall mortality rate was 32%, 40%, 54%, and 68%, and the median overall survival time was 21.9, 18, 16.7, and 13.6 mo for patients in clusters 1 to 4, respectively. Our machine learning-based model performed better in predicting mortality than the traditional model. External validation confirmed the above results. Machine learning is valuable for phenotype classifications of patients with cancer cachexia. Detection of clinically distinct clusters among cachexic patients assists in scheduling personalized treatment strategies and in patient selection for clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
criz1发布了新的文献求助10
2秒前
白潇潇发布了新的文献求助10
2秒前
科研通AI6应助渡月桥采纳,获得10
3秒前
sfc999完成签到,获得积分10
4秒前
wangjialong发布了新的文献求助10
5秒前
Matthew_G完成签到,获得积分10
5秒前
6秒前
figure完成签到 ,获得积分10
6秒前
林白发布了新的文献求助30
6秒前
斯文败类应助花卷采纳,获得10
6秒前
111111发布了新的文献求助10
7秒前
苹果完成签到 ,获得积分20
8秒前
幽默阑悦完成签到,获得积分10
8秒前
9秒前
科研通AI6应助懦弱的丹秋采纳,获得10
11秒前
11秒前
无花果应助雪落采纳,获得10
12秒前
mdjinij发布了新的文献求助10
12秒前
12秒前
12秒前
悠悠发布了新的文献求助10
12秒前
小宋娘亲完成签到 ,获得积分10
13秒前
Ran完成签到 ,获得积分10
13秒前
Murphy完成签到,获得积分10
14秒前
15秒前
菠菜应助herococa采纳,获得150
16秒前
17秒前
18秒前
UP发布了新的文献求助10
18秒前
criz1完成签到,获得积分10
19秒前
19秒前
Ava应助白潇潇采纳,获得10
19秒前
无极微光应助岁月旧曾谙采纳,获得20
20秒前
bkagyin应助张佳宁采纳,获得10
20秒前
阳光绝山完成签到,获得积分20
20秒前
21秒前
wangjialong完成签到,获得积分10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648573
求助须知:如何正确求助?哪些是违规求助? 4775700
关于积分的说明 15044558
捐赠科研通 4807505
什么是DOI,文献DOI怎么找? 2570811
邀请新用户注册赠送积分活动 1527652
关于科研通互助平台的介绍 1486501