Discovery of distinct cancer cachexia phenotypes using an unsupervised machine-learning algorithm

恶病质 医学 观察研究 癌症 聚类分析 队列 内科学 比例危险模型 逻辑回归 人体测量学 生存分析 肿瘤科 机器学习 计算机科学
作者
Hao-Fan Wu,Jiangpeng Yan,Qian Wu,Zhen Yu,Hongxia Xu,Song Chunhua,Zengqing Guo,Wei Li,Yan‐Jun Xiang,Zhe Xu,Jie Luo,Shuqun Cheng,Feng‐Min Zhang,Hanping Shi,Cheng-Le Zhuang
出处
期刊:Nutrition [Elsevier]
卷期号:119: 112317-112317 被引量:2
标识
DOI:10.1016/j.nut.2023.112317
摘要

Cancer cachexia is a debilitating condition with widespread negative effects. The heterogeneity of clinical features within patients with cancer cachexia is unclear. The identification and prognostic analysis of diverse phenotypes of cancer cachexia may help develop individualized interventions to improve outcomes for vulnerable populations. The aim of this study was to show that the machine learning–based cancer cachexia classification model generalized well on the external validation cohort. This was a nationwide multicenter observational study conducted from October 2012 to April 2021 in China. Unsupervised consensus clustering analysis was applied based on demographic, anthropometric, nutritional, oncological, and quality-of-life data. Key characteristics of each cluster were identified using the standardized mean difference. We used logistic and Cox regression analysis to evaluate 1-, 3-, 5-y, and overall mortality. A consensus clustering algorithm was performed for 4329 patients with cancer cachexia in the discovery cohort, and four clusters with distinct phenotypes were uncovered. From clusters 1 to 4, the clinical characteristics of patients showed a transition from almost unimpaired to mildly, moderately, and severely impaired. Consistently, an increase in mortality from clusters 1 to 4 was observed. The overall mortality rate was 32%, 40%, 54%, and 68%, and the median overall survival time was 21.9, 18, 16.7, and 13.6 mo for patients in clusters 1 to 4, respectively. Our machine learning-based model performed better in predicting mortality than the traditional model. External validation confirmed the above results. Machine learning is valuable for phenotype classifications of patients with cancer cachexia. Detection of clinically distinct clusters among cachexic patients assists in scheduling personalized treatment strategies and in patient selection for clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yi发布了新的文献求助10
1秒前
清脆黑米应助Su采纳,获得10
1秒前
1秒前
向阳花完成签到,获得积分10
1秒前
朱佳玉完成签到,获得积分10
2秒前
4秒前
4秒前
1111111发布了新的文献求助10
6秒前
Hello应助Science-x采纳,获得10
6秒前
77发布了新的文献求助10
6秒前
嘟嘟大魔王应助hhhhhhh采纳,获得10
7秒前
叁壹捌发布了新的文献求助10
8秒前
Owen应助Yi采纳,获得10
8秒前
闪闪凝冬完成签到,获得积分10
9秒前
二分完成签到,获得积分20
10秒前
loong发布了新的文献求助10
11秒前
11秒前
天天快乐应助淡淡菠萝采纳,获得10
12秒前
12秒前
852应助mgh采纳,获得10
12秒前
13秒前
欣喜战斗机完成签到,获得积分10
13秒前
烟花应助橙汁椰子汁采纳,获得30
13秒前
龙腾岁月完成签到 ,获得积分10
13秒前
13秒前
14秒前
15秒前
15秒前
李健应助loong采纳,获得10
15秒前
16秒前
玩命的小翠完成签到,获得积分10
16秒前
Jey发布了新的文献求助10
16秒前
多发文章发布了新的文献求助10
18秒前
18秒前
18秒前
19秒前
juziyaya应助叁壹捌采纳,获得10
20秒前
你说的完成签到 ,获得积分10
20秒前
21秒前
活泼岩发布了新的文献求助20
21秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140718
求助须知:如何正确求助?哪些是违规求助? 2791628
关于积分的说明 7799729
捐赠科研通 2447921
什么是DOI,文献DOI怎么找? 1302210
科研通“疑难数据库(出版商)”最低求助积分说明 626473
版权声明 601194