Discovery of distinct cancer cachexia phenotypes using an unsupervised machine-learning algorithm

恶病质 医学 观察研究 癌症 聚类分析 队列 内科学 比例危险模型 逻辑回归 人体测量学 生存分析 肿瘤科 机器学习 计算机科学
作者
Hao-Fan Wu,Jiangpeng Yan,Qian Wu,Zhen Yu,Hongxia Xu,Song Chunhua,Zengqing Guo,Wei Li,Yan‐Jun Xiang,Zhe Xu,Jie Luo,Shuqun Cheng,Feng‐Min Zhang,Hanping Shi,Cheng-Le Zhuang
出处
期刊:Nutrition [Elsevier BV]
卷期号:119: 112317-112317 被引量:3
标识
DOI:10.1016/j.nut.2023.112317
摘要

Cancer cachexia is a debilitating condition with widespread negative effects. The heterogeneity of clinical features within patients with cancer cachexia is unclear. The identification and prognostic analysis of diverse phenotypes of cancer cachexia may help develop individualized interventions to improve outcomes for vulnerable populations. The aim of this study was to show that the machine learning–based cancer cachexia classification model generalized well on the external validation cohort. This was a nationwide multicenter observational study conducted from October 2012 to April 2021 in China. Unsupervised consensus clustering analysis was applied based on demographic, anthropometric, nutritional, oncological, and quality-of-life data. Key characteristics of each cluster were identified using the standardized mean difference. We used logistic and Cox regression analysis to evaluate 1-, 3-, 5-y, and overall mortality. A consensus clustering algorithm was performed for 4329 patients with cancer cachexia in the discovery cohort, and four clusters with distinct phenotypes were uncovered. From clusters 1 to 4, the clinical characteristics of patients showed a transition from almost unimpaired to mildly, moderately, and severely impaired. Consistently, an increase in mortality from clusters 1 to 4 was observed. The overall mortality rate was 32%, 40%, 54%, and 68%, and the median overall survival time was 21.9, 18, 16.7, and 13.6 mo for patients in clusters 1 to 4, respectively. Our machine learning-based model performed better in predicting mortality than the traditional model. External validation confirmed the above results. Machine learning is valuable for phenotype classifications of patients with cancer cachexia. Detection of clinically distinct clusters among cachexic patients assists in scheduling personalized treatment strategies and in patient selection for clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
青年才俊发布了新的文献求助10
1秒前
1秒前
科研通AI6应助Adzuki0812采纳,获得10
1秒前
南风发布了新的文献求助10
1秒前
浮游应助eng采纳,获得10
2秒前
2秒前
Cchoman完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
5秒前
葡萄炖雪梨完成签到,获得积分10
5秒前
英俊的铭应助爱打乒乓球采纳,获得10
5秒前
格子大王完成签到,获得积分10
6秒前
余咋发布了新的文献求助10
6秒前
Hello应助陈同学采纳,获得10
7秒前
三文鱼发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
炼丹师应助CHBW采纳,获得20
7秒前
yxt完成签到,获得积分10
8秒前
揽星色应助娇气的背包采纳,获得10
8秒前
DZ发布了新的文献求助10
8秒前
Owen应助木子贝贝采纳,获得10
8秒前
angelinazh发布了新的文献求助10
8秒前
9秒前
10秒前
上官若男应助晋启轩采纳,获得10
10秒前
浮游应助wocao采纳,获得10
10秒前
12秒前
13秒前
南风发布了新的文献求助10
13秒前
13秒前
wqx发布了新的文献求助20
13秒前
深情安青应助王小冉采纳,获得30
13秒前
14秒前
loong应助赖沛采纳,获得30
14秒前
15秒前
15秒前
椿上春树发布了新的文献求助10
15秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5113903
求助须知:如何正确求助?哪些是违规求助? 4321280
关于积分的说明 13464996
捐赠科研通 4152777
什么是DOI,文献DOI怎么找? 2275420
邀请新用户注册赠送积分活动 1277450
关于科研通互助平台的介绍 1215482