Discovery of distinct cancer cachexia phenotypes using an unsupervised machine-learning algorithm

恶病质 医学 观察研究 癌症 聚类分析 队列 内科学 比例危险模型 逻辑回归 人体测量学 生存分析 肿瘤科 机器学习 计算机科学
作者
Hao-Fan Wu,Jiangpeng Yan,Qian Wu,Zhen Yu,Hongxia Xu,Song Chunhua,Zengqing Guo,Wei Li,Yan‐Jun Xiang,Zhe Xu,Jie Luo,Shuqun Cheng,Feng‐Min Zhang,Hanping Shi,Cheng-Le Zhuang
出处
期刊:Nutrition [Elsevier]
卷期号:119: 112317-112317 被引量:2
标识
DOI:10.1016/j.nut.2023.112317
摘要

Cancer cachexia is a debilitating condition with widespread negative effects. The heterogeneity of clinical features within patients with cancer cachexia is unclear. The identification and prognostic analysis of diverse phenotypes of cancer cachexia may help develop individualized interventions to improve outcomes for vulnerable populations. The aim of this study was to show that the machine learning–based cancer cachexia classification model generalized well on the external validation cohort. This was a nationwide multicenter observational study conducted from October 2012 to April 2021 in China. Unsupervised consensus clustering analysis was applied based on demographic, anthropometric, nutritional, oncological, and quality-of-life data. Key characteristics of each cluster were identified using the standardized mean difference. We used logistic and Cox regression analysis to evaluate 1-, 3-, 5-y, and overall mortality. A consensus clustering algorithm was performed for 4329 patients with cancer cachexia in the discovery cohort, and four clusters with distinct phenotypes were uncovered. From clusters 1 to 4, the clinical characteristics of patients showed a transition from almost unimpaired to mildly, moderately, and severely impaired. Consistently, an increase in mortality from clusters 1 to 4 was observed. The overall mortality rate was 32%, 40%, 54%, and 68%, and the median overall survival time was 21.9, 18, 16.7, and 13.6 mo for patients in clusters 1 to 4, respectively. Our machine learning-based model performed better in predicting mortality than the traditional model. External validation confirmed the above results. Machine learning is valuable for phenotype classifications of patients with cancer cachexia. Detection of clinically distinct clusters among cachexic patients assists in scheduling personalized treatment strategies and in patient selection for clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
单薄新烟发布了新的文献求助10
1秒前
1秒前
桐桐应助小王采纳,获得10
1秒前
2秒前
2秒前
2秒前
楚岸发布了新的文献求助10
4秒前
阿强哥20241101完成签到,获得积分10
4秒前
TQY完成签到,获得积分10
5秒前
Khr1stINK发布了新的文献求助10
5秒前
宁静致远完成签到,获得积分10
5秒前
mxbyccbaby完成签到,获得积分10
6秒前
6秒前
楼寒天发布了新的文献求助30
6秒前
6秒前
jdmeme完成签到 ,获得积分10
7秒前
DVD完成签到 ,获得积分10
8秒前
学术嫪毐完成签到,获得积分10
8秒前
Xyyy发布了新的文献求助10
9秒前
uu完成签到,获得积分10
9秒前
小蘑菇应助赵赵赵采纳,获得10
9秒前
阿兹卡班狂徒完成签到 ,获得积分10
9秒前
9秒前
yuefeng发布了新的文献求助10
10秒前
澳臻白发布了新的文献求助10
10秒前
11秒前
刘大妮发布了新的文献求助10
11秒前
11秒前
王欧尼发布了新的文献求助10
12秒前
sooya关注了科研通微信公众号
12秒前
13秒前
13秒前
青木蓝发布了新的文献求助10
15秒前
852应助gaga采纳,获得10
15秒前
16秒前
16秒前
游尘发布了新的文献求助10
17秒前
bkagyin应助zhaowenxian采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794