Application of pipeline leakage detection based on distributed optical fiber acoustic sensor system and convolutional neural network

泄漏(经济) 声学 水下 计算机科学 管道运输 电子工程 工程类 地质学 物理 环境工程 海洋学 宏观经济学 经济
作者
Yuxing Duan,Lei Liang,Xiaoling Tong,Bingshi Luo,Biqiang Cheng
出处
期刊:Journal of Physics D [IOP Publishing]
卷期号:57 (10): 105102-105102 被引量:19
标识
DOI:10.1088/1361-6463/ad1144
摘要

Abstract Underwater pipelines are exposed to harsh environments, including high salinity, multi-modal vortex corrosion, and severe wave interference. Their safety is essential for the development and transportation of marine energy. Therefore, real-time safety monitoring of long-distance energy pipelines is of great strategic importance for ensuring the safety of life and property and energy security. With the rapid development of energy development, the corrosion and leakage mechanisms of natural gas pipelines, as well as their identification and early warning, have become the focus of attention. Optical fiber sensing technology has been applied to various energy safety monitoring fields. However, the mechanism of sound source fluctuations in pipeline leakage and the mutual coupling mechanism between distributed optical fiber sensing technology and leakage sound waves are not yet clear. This paper establishes a model based on sound wave propagation and leakage noise response, derives a quadratic fitting relationship between pipeline pressure fluctuations and leakage orifices and a relationship between leakage noise source standard deviation and orifices, and proposes a complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) permutation entropy underwater natural gas pipeline leakage signal recognition method based on distributed optical fiber acoustic sensing technology. The results of theoretical analysis are verified by experiments. It shows that the signal processing method of CEEMDAN permutation entropy is superior to traditional noise reduction methods, which can better preserve the features of the original signal; the radial basis function (RBF) neural network model can accurately identify four different leakage features with an accuracy of 88.15%, and its recognition stability and generalization ability are superior to convolutional neural network, backpropagation, and random forest. Therefore, the research results of this paper provide a new method for safety monitoring in the application of energy pipeline transportation engineering, and expand the potential application scenarios of distributed acoustic sensing sensor systems and RBF neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkk完成签到,获得积分10
刚刚
Cynthia发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
宣千易发布了新的文献求助10
2秒前
柔弱的便当完成签到,获得积分10
2秒前
年轻的问兰完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
彭于晏应助Jasmine采纳,获得10
3秒前
3秒前
Orange应助little_forest采纳,获得10
4秒前
小火孩发布了新的文献求助10
4秒前
大个应助顺利的奇异果采纳,获得10
4秒前
酷波er应助herdwind采纳,获得10
5秒前
5秒前
Lucas应助维洛尼亚采纳,获得10
5秒前
无极微光应助HEANZ采纳,获得20
5秒前
liao应助美好斓采纳,获得10
6秒前
单薄不惜完成签到,获得积分10
6秒前
汐风完成签到,获得积分10
6秒前
6秒前
7秒前
隐形曼青应助acuter采纳,获得30
7秒前
7秒前
kakoi完成签到,获得积分20
7秒前
小唐完成签到,获得积分20
7秒前
大模型应助Goyounjung采纳,获得10
7秒前
wanci应助小太阳采纳,获得10
8秒前
coolplex发布了新的文献求助10
8秒前
8秒前
8秒前
凌发发布了新的文献求助10
8秒前
土豪的严青完成签到,获得积分10
9秒前
犹豫的棒棒糖完成签到,获得积分10
9秒前
SciGPT应助招财进宝宝采纳,获得10
9秒前
10秒前
10秒前
学术混子完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210