Application of pipeline leakage detection based on distributed optical fiber acoustic sensor system and convolutional neural network

泄漏(经济) 声学 水下 计算机科学 管道运输 电子工程 工程类 地质学 物理 环境工程 海洋学 宏观经济学 经济
作者
Yuxing Duan,Lei Liang,Xiaoling Tong,Bingshi Luo,Biqiang Cheng
出处
期刊:Journal of Physics D [IOP Publishing]
卷期号:57 (10): 105102-105102 被引量:19
标识
DOI:10.1088/1361-6463/ad1144
摘要

Abstract Underwater pipelines are exposed to harsh environments, including high salinity, multi-modal vortex corrosion, and severe wave interference. Their safety is essential for the development and transportation of marine energy. Therefore, real-time safety monitoring of long-distance energy pipelines is of great strategic importance for ensuring the safety of life and property and energy security. With the rapid development of energy development, the corrosion and leakage mechanisms of natural gas pipelines, as well as their identification and early warning, have become the focus of attention. Optical fiber sensing technology has been applied to various energy safety monitoring fields. However, the mechanism of sound source fluctuations in pipeline leakage and the mutual coupling mechanism between distributed optical fiber sensing technology and leakage sound waves are not yet clear. This paper establishes a model based on sound wave propagation and leakage noise response, derives a quadratic fitting relationship between pipeline pressure fluctuations and leakage orifices and a relationship between leakage noise source standard deviation and orifices, and proposes a complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) permutation entropy underwater natural gas pipeline leakage signal recognition method based on distributed optical fiber acoustic sensing technology. The results of theoretical analysis are verified by experiments. It shows that the signal processing method of CEEMDAN permutation entropy is superior to traditional noise reduction methods, which can better preserve the features of the original signal; the radial basis function (RBF) neural network model can accurately identify four different leakage features with an accuracy of 88.15%, and its recognition stability and generalization ability are superior to convolutional neural network, backpropagation, and random forest. Therefore, the research results of this paper provide a new method for safety monitoring in the application of energy pipeline transportation engineering, and expand the potential application scenarios of distributed acoustic sensing sensor systems and RBF neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小灵通完成签到,获得积分10
刚刚
haoboshi完成签到 ,获得积分10
刚刚
1秒前
情怀应助橙子采纳,获得10
2秒前
3秒前
赵雅婷完成签到,获得积分10
3秒前
Sc发布了新的文献求助10
3秒前
4秒前
6秒前
王先进完成签到,获得积分20
7秒前
cy发布了新的文献求助10
7秒前
8秒前
8秒前
zy发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
11秒前
11秒前
biyeshunli发布了新的文献求助10
12秒前
FashionBoy应助单原子的世界采纳,获得10
12秒前
复杂千亦发布了新的文献求助10
12秒前
jojo发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
14秒前
Ayu完成签到,获得积分10
14秒前
漂亮恶天完成签到 ,获得积分10
15秒前
顾矜应助徐hhh采纳,获得10
15秒前
15秒前
橙子发布了新的文献求助10
16秒前
HappinessAndJoy完成签到,获得积分10
17秒前
17秒前
17秒前
科研通AI2S应助QG采纳,获得10
18秒前
zzzzlololo完成签到,获得积分20
18秒前
18秒前
宇飞思妖发布了新的文献求助30
18秒前
huvy发布了新的文献求助10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507548
求助须知:如何正确求助?哪些是违规求助? 4603165
关于积分的说明 14483971
捐赠科研通 4536922
什么是DOI,文献DOI怎么找? 2486485
邀请新用户注册赠送积分活动 1469074
关于科研通互助平台的介绍 1441411