Application of pipeline leakage detection based on distributed optical fiber acoustic sensor system and convolutional neural network

泄漏(经济) 声学 水下 计算机科学 管道运输 电子工程 工程类 地质学 物理 环境工程 海洋学 宏观经济学 经济
作者
Yuxing Duan,Lei Liang,Tong Xiao-ling,Bingshi Luo,Biqiang Cheng
出处
期刊:Journal of Physics D [Institute of Physics]
卷期号:57 (10): 105102-105102 被引量:2
标识
DOI:10.1088/1361-6463/ad1144
摘要

Abstract Underwater pipelines are exposed to harsh environments, including high salinity, multi-modal vortex corrosion, and severe wave interference. Their safety is essential for the development and transportation of marine energy. Therefore, real-time safety monitoring of long-distance energy pipelines is of great strategic importance for ensuring the safety of life and property and energy security. With the rapid development of energy development, the corrosion and leakage mechanisms of natural gas pipelines, as well as their identification and early warning, have become the focus of attention. Optical fiber sensing technology has been applied to various energy safety monitoring fields. However, the mechanism of sound source fluctuations in pipeline leakage and the mutual coupling mechanism between distributed optical fiber sensing technology and leakage sound waves are not yet clear. This paper establishes a model based on sound wave propagation and leakage noise response, derives a quadratic fitting relationship between pipeline pressure fluctuations and leakage orifices and a relationship between leakage noise source standard deviation and orifices, and proposes a complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) permutation entropy underwater natural gas pipeline leakage signal recognition method based on distributed optical fiber acoustic sensing technology. The results of theoretical analysis are verified by experiments. It shows that the signal processing method of CEEMDAN permutation entropy is superior to traditional noise reduction methods, which can better preserve the features of the original signal; the radial basis function (RBF) neural network model can accurately identify four different leakage features with an accuracy of 88.15%, and its recognition stability and generalization ability are superior to convolutional neural network, backpropagation, and random forest. Therefore, the research results of this paper provide a new method for safety monitoring in the application of energy pipeline transportation engineering, and expand the potential application scenarios of distributed acoustic sensing sensor systems and RBF neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助现代的小馒头采纳,获得10
3秒前
小梁完成签到,获得积分20
3秒前
un完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
Zeng完成签到,获得积分10
6秒前
左彦发布了新的文献求助10
6秒前
JJ发布了新的文献求助10
6秒前
6秒前
函数完成签到 ,获得积分10
6秒前
灵均发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
兴奋的定帮应助新城吴采纳,获得10
9秒前
默默安双发布了新的文献求助10
9秒前
nmamtf完成签到,获得积分10
10秒前
小蘑菇应助cytheria采纳,获得10
11秒前
江屿发布了新的文献求助10
11秒前
12秒前
13秒前
韩睿盈发布了新的文献求助10
13秒前
kersen发布了新的文献求助10
13秒前
喻言又止发布了新的文献求助10
14秒前
小梁关注了科研通微信公众号
15秒前
彭于晏应助维维采纳,获得10
15秒前
万能图书馆应助ZSQ采纳,获得10
15秒前
16秒前
缓慢天抒发布了新的文献求助10
17秒前
罗wq发布了新的文献求助10
18秒前
科研通AI2S应助放青松采纳,获得10
18秒前
LLL发布了新的文献求助10
19秒前
迷人问兰发布了新的文献求助10
20秒前
刚刚发布了新的文献求助10
20秒前
韩睿盈完成签到,获得积分10
20秒前
Prometheusss完成签到,获得积分10
21秒前
22秒前
Lyd完成签到,获得积分10
22秒前
无情听南发布了新的文献求助10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952646
求助须知:如何正确求助?哪些是违规求助? 3498064
关于积分的说明 11090366
捐赠科研通 3228670
什么是DOI,文献DOI怎么找? 1785032
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801349