Application of pipeline leakage detection based on distributed optical fiber acoustic sensor system and convolutional neural network

泄漏(经济) 声学 水下 计算机科学 管道运输 电子工程 工程类 地质学 物理 环境工程 海洋学 宏观经济学 经济
作者
Yuxing Duan,Lei Liang,Xiaoling Tong,Bingshi Luo,Biqiang Cheng
出处
期刊:Journal of Physics D [IOP Publishing]
卷期号:57 (10): 105102-105102 被引量:19
标识
DOI:10.1088/1361-6463/ad1144
摘要

Abstract Underwater pipelines are exposed to harsh environments, including high salinity, multi-modal vortex corrosion, and severe wave interference. Their safety is essential for the development and transportation of marine energy. Therefore, real-time safety monitoring of long-distance energy pipelines is of great strategic importance for ensuring the safety of life and property and energy security. With the rapid development of energy development, the corrosion and leakage mechanisms of natural gas pipelines, as well as their identification and early warning, have become the focus of attention. Optical fiber sensing technology has been applied to various energy safety monitoring fields. However, the mechanism of sound source fluctuations in pipeline leakage and the mutual coupling mechanism between distributed optical fiber sensing technology and leakage sound waves are not yet clear. This paper establishes a model based on sound wave propagation and leakage noise response, derives a quadratic fitting relationship between pipeline pressure fluctuations and leakage orifices and a relationship between leakage noise source standard deviation and orifices, and proposes a complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) permutation entropy underwater natural gas pipeline leakage signal recognition method based on distributed optical fiber acoustic sensing technology. The results of theoretical analysis are verified by experiments. It shows that the signal processing method of CEEMDAN permutation entropy is superior to traditional noise reduction methods, which can better preserve the features of the original signal; the radial basis function (RBF) neural network model can accurately identify four different leakage features with an accuracy of 88.15%, and its recognition stability and generalization ability are superior to convolutional neural network, backpropagation, and random forest. Therefore, the research results of this paper provide a new method for safety monitoring in the application of energy pipeline transportation engineering, and expand the potential application scenarios of distributed acoustic sensing sensor systems and RBF neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纸包鱼应助粗心的忆山采纳,获得10
1秒前
1秒前
亓大大完成签到,获得积分10
1秒前
乐乐完成签到,获得积分10
1秒前
打打应助躲哪个草采纳,获得10
1秒前
FashionBoy应助李光辉采纳,获得10
2秒前
lxdfrank完成签到,获得积分10
2秒前
饱满的毛巾完成签到,获得积分10
2秒前
kaiyuannnnnn完成签到,获得积分10
2秒前
3秒前
3秒前
柔弱云朵完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助20
4秒前
4秒前
DH发布了新的文献求助10
4秒前
淳于语海完成签到,获得积分10
4秒前
LiangxuanPan完成签到,获得积分10
5秒前
yan发布了新的文献求助10
6秒前
6秒前
whisper完成签到,获得积分10
6秒前
WENBENDING完成签到,获得积分10
6秒前
kaikai发布了新的文献求助10
6秒前
lmc完成签到,获得积分10
6秒前
你一头牛牛牛牛完成签到,获得积分10
7秒前
丘比特应助南浔采纳,获得10
8秒前
田様应助kaiyuannnnnn采纳,获得10
8秒前
丘比特应助彩色的过客采纳,获得10
8秒前
完美的皮卡丘完成签到,获得积分10
8秒前
所所应助柳絮旭采纳,获得10
8秒前
哈哈哈发布了新的文献求助10
8秒前
大模型应助左丘世立采纳,获得10
8秒前
脑洞疼应助留胡子的海豚采纳,获得10
9秒前
蜗牛完成签到,获得积分10
9秒前
seven完成签到,获得积分10
9秒前
sttail发布了新的文献求助10
9秒前
飘零的歌手完成签到,获得积分10
9秒前
10秒前
半间歇式聚合反应完成签到 ,获得积分10
10秒前
梨花完成签到,获得积分10
10秒前
傅医生完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997