Application of pipeline leakage detection based on distributed optical fiber acoustic sensor system and convolutional neural network

泄漏(经济) 声学 水下 计算机科学 管道运输 电子工程 工程类 地质学 物理 环境工程 海洋学 宏观经济学 经济
作者
Yuxing Duan,Lei Liang,Xiaoling Tong,Bingshi Luo,Biqiang Cheng
出处
期刊:Journal of Physics D [IOP Publishing]
卷期号:57 (10): 105102-105102 被引量:19
标识
DOI:10.1088/1361-6463/ad1144
摘要

Abstract Underwater pipelines are exposed to harsh environments, including high salinity, multi-modal vortex corrosion, and severe wave interference. Their safety is essential for the development and transportation of marine energy. Therefore, real-time safety monitoring of long-distance energy pipelines is of great strategic importance for ensuring the safety of life and property and energy security. With the rapid development of energy development, the corrosion and leakage mechanisms of natural gas pipelines, as well as their identification and early warning, have become the focus of attention. Optical fiber sensing technology has been applied to various energy safety monitoring fields. However, the mechanism of sound source fluctuations in pipeline leakage and the mutual coupling mechanism between distributed optical fiber sensing technology and leakage sound waves are not yet clear. This paper establishes a model based on sound wave propagation and leakage noise response, derives a quadratic fitting relationship between pipeline pressure fluctuations and leakage orifices and a relationship between leakage noise source standard deviation and orifices, and proposes a complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) permutation entropy underwater natural gas pipeline leakage signal recognition method based on distributed optical fiber acoustic sensing technology. The results of theoretical analysis are verified by experiments. It shows that the signal processing method of CEEMDAN permutation entropy is superior to traditional noise reduction methods, which can better preserve the features of the original signal; the radial basis function (RBF) neural network model can accurately identify four different leakage features with an accuracy of 88.15%, and its recognition stability and generalization ability are superior to convolutional neural network, backpropagation, and random forest. Therefore, the research results of this paper provide a new method for safety monitoring in the application of energy pipeline transportation engineering, and expand the potential application scenarios of distributed acoustic sensing sensor systems and RBF neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XL发布了新的文献求助10
刚刚
1秒前
小鱼应助等等采纳,获得10
1秒前
Jasper应助等等采纳,获得10
1秒前
1秒前
Hello应助粉色水蒸蛋采纳,获得10
1秒前
2秒前
2秒前
2秒前
2秒前
所所应助小吉麻麻采纳,获得10
3秒前
3秒前
世界小奇发布了新的文献求助10
3秒前
乐乐应助默默的含烟采纳,获得10
4秒前
ss发布了新的文献求助10
4秒前
4秒前
bjyx完成签到,获得积分10
5秒前
善学以致用应助111采纳,获得10
6秒前
loser发布了新的文献求助10
6秒前
6秒前
斯文若之发布了新的文献求助10
6秒前
走四方发布了新的文献求助10
6秒前
Ava应助yxy采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
XQJ发布了新的文献求助10
9秒前
10秒前
CUI完成签到,获得积分10
10秒前
10秒前
10秒前
ikutovaya完成签到,获得积分10
10秒前
畅快安白发布了新的文献求助10
11秒前
SciGPT应助研友_8QxayZ采纳,获得10
11秒前
脑洞疼应助璐璐核桃露采纳,获得10
11秒前
ho发布了新的文献求助50
12秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624763
求助须知:如何正确求助?哪些是违规求助? 4710606
关于积分的说明 14951556
捐赠科研通 4778691
什么是DOI,文献DOI怎么找? 2553391
邀请新用户注册赠送积分活动 1515355
关于科研通互助平台的介绍 1475679