已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Application of pipeline leakage detection based on distributed optical fiber acoustic sensor system and convolutional neural network

泄漏(经济) 声学 水下 计算机科学 管道运输 电子工程 工程类 地质学 物理 环境工程 海洋学 宏观经济学 经济
作者
Yuxing Duan,Lei Liang,Tong Xiao-ling,Bingshi Luo,Biqiang Cheng
出处
期刊:Journal of Physics D [IOP Publishing]
卷期号:57 (10): 105102-105102 被引量:2
标识
DOI:10.1088/1361-6463/ad1144
摘要

Abstract Underwater pipelines are exposed to harsh environments, including high salinity, multi-modal vortex corrosion, and severe wave interference. Their safety is essential for the development and transportation of marine energy. Therefore, real-time safety monitoring of long-distance energy pipelines is of great strategic importance for ensuring the safety of life and property and energy security. With the rapid development of energy development, the corrosion and leakage mechanisms of natural gas pipelines, as well as their identification and early warning, have become the focus of attention. Optical fiber sensing technology has been applied to various energy safety monitoring fields. However, the mechanism of sound source fluctuations in pipeline leakage and the mutual coupling mechanism between distributed optical fiber sensing technology and leakage sound waves are not yet clear. This paper establishes a model based on sound wave propagation and leakage noise response, derives a quadratic fitting relationship between pipeline pressure fluctuations and leakage orifices and a relationship between leakage noise source standard deviation and orifices, and proposes a complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) permutation entropy underwater natural gas pipeline leakage signal recognition method based on distributed optical fiber acoustic sensing technology. The results of theoretical analysis are verified by experiments. It shows that the signal processing method of CEEMDAN permutation entropy is superior to traditional noise reduction methods, which can better preserve the features of the original signal; the radial basis function (RBF) neural network model can accurately identify four different leakage features with an accuracy of 88.15%, and its recognition stability and generalization ability are superior to convolutional neural network, backpropagation, and random forest. Therefore, the research results of this paper provide a new method for safety monitoring in the application of energy pipeline transportation engineering, and expand the potential application scenarios of distributed acoustic sensing sensor systems and RBF neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
adkdad完成签到,获得积分10
4秒前
陶醉的熊完成签到,获得积分10
4秒前
4秒前
4秒前
领导范儿应助等待的花生采纳,获得10
5秒前
6秒前
可萨利亚应助科研通管家采纳,获得10
7秒前
7秒前
HGalong应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得20
7秒前
居居应助科研通管家采纳,获得30
7秒前
7秒前
7秒前
华仔应助哲子子采纳,获得10
7秒前
共享精神应助yyymmma采纳,获得10
9秒前
wwwww完成签到,获得积分10
10秒前
小纯洁发布了新的文献求助10
13秒前
13秒前
14秒前
16秒前
16秒前
999发布了新的文献求助10
16秒前
科研达人发布了新的文献求助10
17秒前
17秒前
18秒前
coll88发布了新的文献求助10
18秒前
19秒前
honda发布了新的文献求助10
21秒前
yyymmma发布了新的文献求助10
23秒前
23秒前
巴啦啦啦发布了新的文献求助10
24秒前
我相信发布了新的文献求助10
25秒前
平常的数据线完成签到 ,获得积分10
25秒前
小二郎应助doctor杨采纳,获得10
26秒前
KALIdemo158完成签到,获得积分10
28秒前
Adrenaline完成签到 ,获得积分10
28秒前
starleo完成签到,获得积分10
28秒前
肉松发布了新的文献求助10
29秒前
30秒前
平常的数据线关注了科研通微信公众号
32秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158461
求助须知:如何正确求助?哪些是违规求助? 2809636
关于积分的说明 7882903
捐赠科研通 2468254
什么是DOI,文献DOI怎么找? 1314017
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601956