已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Application of pipeline leakage detection based on distributed optical fiber acoustic sensor system and convolutional neural network

泄漏(经济) 声学 水下 计算机科学 管道运输 电子工程 工程类 地质学 物理 环境工程 海洋学 宏观经济学 经济
作者
Yuxing Duan,Lei Liang,Xiaoling Tong,Bingshi Luo,Biqiang Cheng
出处
期刊:Journal of Physics D [IOP Publishing]
卷期号:57 (10): 105102-105102 被引量:19
标识
DOI:10.1088/1361-6463/ad1144
摘要

Abstract Underwater pipelines are exposed to harsh environments, including high salinity, multi-modal vortex corrosion, and severe wave interference. Their safety is essential for the development and transportation of marine energy. Therefore, real-time safety monitoring of long-distance energy pipelines is of great strategic importance for ensuring the safety of life and property and energy security. With the rapid development of energy development, the corrosion and leakage mechanisms of natural gas pipelines, as well as their identification and early warning, have become the focus of attention. Optical fiber sensing technology has been applied to various energy safety monitoring fields. However, the mechanism of sound source fluctuations in pipeline leakage and the mutual coupling mechanism between distributed optical fiber sensing technology and leakage sound waves are not yet clear. This paper establishes a model based on sound wave propagation and leakage noise response, derives a quadratic fitting relationship between pipeline pressure fluctuations and leakage orifices and a relationship between leakage noise source standard deviation and orifices, and proposes a complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) permutation entropy underwater natural gas pipeline leakage signal recognition method based on distributed optical fiber acoustic sensing technology. The results of theoretical analysis are verified by experiments. It shows that the signal processing method of CEEMDAN permutation entropy is superior to traditional noise reduction methods, which can better preserve the features of the original signal; the radial basis function (RBF) neural network model can accurately identify four different leakage features with an accuracy of 88.15%, and its recognition stability and generalization ability are superior to convolutional neural network, backpropagation, and random forest. Therefore, the research results of this paper provide a new method for safety monitoring in the application of energy pipeline transportation engineering, and expand the potential application scenarios of distributed acoustic sensing sensor systems and RBF neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jimskylxk完成签到,获得积分10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
人机灵发布了新的文献求助10
2秒前
ccm应助科研通管家采纳,获得10
2秒前
yyds应助科研通管家采纳,获得150
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
3秒前
司马方发布了新的文献求助20
3秒前
木子完成签到 ,获得积分10
4秒前
梁凤炜完成签到,获得积分10
5秒前
裂冰应助烂漫的绫采纳,获得10
6秒前
6秒前
会撒娇的乌冬面完成签到 ,获得积分10
6秒前
吴开珍完成签到 ,获得积分10
8秒前
8秒前
LiNa完成签到 ,获得积分10
8秒前
灶灶完成签到 ,获得积分10
10秒前
清爽的以晴完成签到 ,获得积分10
10秒前
我爱螺蛳粉完成签到 ,获得积分10
12秒前
12秒前
影子发布了新的文献求助10
13秒前
研友_VZG7GZ应助柚柠采纳,获得10
14秒前
exosome发布了新的文献求助10
14秒前
15秒前
科研通AI6应助YumiPg采纳,获得10
16秒前
Orange应助lx采纳,获得10
16秒前
17秒前
怀民完成签到 ,获得积分10
18秒前
烟花应助111111采纳,获得10
18秒前
23秒前
qq发布了新的文献求助10
24秒前
25秒前
YX完成签到,获得积分10
25秒前
LLL完成签到 ,获得积分20
25秒前
时尚的诗珊完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595559
求助须知:如何正确求助?哪些是违规求助? 4680842
关于积分的说明 14817682
捐赠科研通 4650520
什么是DOI,文献DOI怎么找? 2535474
邀请新用户注册赠送积分活动 1503456
关于科研通互助平台的介绍 1469721