亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of pipeline leakage detection based on distributed optical fiber acoustic sensor system and convolutional neural network

泄漏(经济) 声学 水下 计算机科学 管道运输 电子工程 工程类 地质学 物理 环境工程 海洋学 宏观经济学 经济
作者
Yuxing Duan,Lei Liang,Tong Xiao-ling,Bingshi Luo,Biqiang Cheng
出处
期刊:Journal of Physics D [Institute of Physics]
卷期号:57 (10): 105102-105102 被引量:2
标识
DOI:10.1088/1361-6463/ad1144
摘要

Abstract Underwater pipelines are exposed to harsh environments, including high salinity, multi-modal vortex corrosion, and severe wave interference. Their safety is essential for the development and transportation of marine energy. Therefore, real-time safety monitoring of long-distance energy pipelines is of great strategic importance for ensuring the safety of life and property and energy security. With the rapid development of energy development, the corrosion and leakage mechanisms of natural gas pipelines, as well as their identification and early warning, have become the focus of attention. Optical fiber sensing technology has been applied to various energy safety monitoring fields. However, the mechanism of sound source fluctuations in pipeline leakage and the mutual coupling mechanism between distributed optical fiber sensing technology and leakage sound waves are not yet clear. This paper establishes a model based on sound wave propagation and leakage noise response, derives a quadratic fitting relationship between pipeline pressure fluctuations and leakage orifices and a relationship between leakage noise source standard deviation and orifices, and proposes a complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) permutation entropy underwater natural gas pipeline leakage signal recognition method based on distributed optical fiber acoustic sensing technology. The results of theoretical analysis are verified by experiments. It shows that the signal processing method of CEEMDAN permutation entropy is superior to traditional noise reduction methods, which can better preserve the features of the original signal; the radial basis function (RBF) neural network model can accurately identify four different leakage features with an accuracy of 88.15%, and its recognition stability and generalization ability are superior to convolutional neural network, backpropagation, and random forest. Therefore, the research results of this paper provide a new method for safety monitoring in the application of energy pipeline transportation engineering, and expand the potential application scenarios of distributed acoustic sensing sensor systems and RBF neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助guimizhizhu11采纳,获得10
19秒前
小梦完成签到,获得积分10
22秒前
26秒前
29秒前
老石完成签到 ,获得积分10
56秒前
量子星尘发布了新的文献求助10
1分钟前
clickable发布了新的文献求助10
1分钟前
1分钟前
guimizhizhu11发布了新的文献求助10
1分钟前
白华苍松发布了新的文献求助20
1分钟前
guimizhizhu11完成签到,获得积分10
1分钟前
顾矜应助白华苍松采纳,获得10
2分钟前
颢懿完成签到 ,获得积分10
2分钟前
ccc2完成签到,获得积分0
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI5应助心想柿橙采纳,获得10
2分钟前
CHEN完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
认真自行车完成签到,获得积分10
4分钟前
钱邦国完成签到 ,获得积分10
5分钟前
6分钟前
白华苍松完成签到,获得积分10
6分钟前
白华苍松发布了新的文献求助10
6分钟前
TiAmo完成签到 ,获得积分10
6分钟前
feihua1完成签到 ,获得积分10
7分钟前
大胆的碧菡完成签到,获得积分10
7分钟前
笨笨山芙完成签到 ,获得积分10
7分钟前
8分钟前
毛毛完成签到,获得积分10
8分钟前
量子星尘发布了新的文献求助10
9分钟前
9分钟前
酷酷海豚完成签到,获得积分10
9分钟前
胖小羊完成签到 ,获得积分10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
123完成签到,获得积分10
11分钟前
12分钟前
千里草完成签到,获得积分10
13分钟前
13分钟前
心想柿橙发布了新的文献求助10
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952365
求助须知:如何正确求助?哪些是违规求助? 4215092
关于积分的说明 13111129
捐赠科研通 3997013
什么是DOI,文献DOI怎么找? 2187723
邀请新用户注册赠送积分活动 1202987
关于科研通互助平台的介绍 1115712