Application of pipeline leakage detection based on distributed optical fiber acoustic sensor system and convolutional neural network

泄漏(经济) 声学 水下 计算机科学 管道运输 电子工程 工程类 地质学 物理 环境工程 海洋学 宏观经济学 经济
作者
Yuxing Duan,Lei Liang,Xiaoling Tong,Bingshi Luo,Biqiang Cheng
出处
期刊:Journal of Physics D [IOP Publishing]
卷期号:57 (10): 105102-105102 被引量:19
标识
DOI:10.1088/1361-6463/ad1144
摘要

Abstract Underwater pipelines are exposed to harsh environments, including high salinity, multi-modal vortex corrosion, and severe wave interference. Their safety is essential for the development and transportation of marine energy. Therefore, real-time safety monitoring of long-distance energy pipelines is of great strategic importance for ensuring the safety of life and property and energy security. With the rapid development of energy development, the corrosion and leakage mechanisms of natural gas pipelines, as well as their identification and early warning, have become the focus of attention. Optical fiber sensing technology has been applied to various energy safety monitoring fields. However, the mechanism of sound source fluctuations in pipeline leakage and the mutual coupling mechanism between distributed optical fiber sensing technology and leakage sound waves are not yet clear. This paper establishes a model based on sound wave propagation and leakage noise response, derives a quadratic fitting relationship between pipeline pressure fluctuations and leakage orifices and a relationship between leakage noise source standard deviation and orifices, and proposes a complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) permutation entropy underwater natural gas pipeline leakage signal recognition method based on distributed optical fiber acoustic sensing technology. The results of theoretical analysis are verified by experiments. It shows that the signal processing method of CEEMDAN permutation entropy is superior to traditional noise reduction methods, which can better preserve the features of the original signal; the radial basis function (RBF) neural network model can accurately identify four different leakage features with an accuracy of 88.15%, and its recognition stability and generalization ability are superior to convolutional neural network, backpropagation, and random forest. Therefore, the research results of this paper provide a new method for safety monitoring in the application of energy pipeline transportation engineering, and expand the potential application scenarios of distributed acoustic sensing sensor systems and RBF neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xixi发布了新的文献求助10
刚刚
冰点发布了新的文献求助10
刚刚
1秒前
烟花应助Adzuki0812采纳,获得10
2秒前
3秒前
霸气鞯发布了新的文献求助10
3秒前
123321321345完成签到,获得积分10
4秒前
务实的蛋挞完成签到,获得积分20
5秒前
5秒前
wl17865313955发布了新的文献求助10
6秒前
Catherine_Song完成签到 ,获得积分10
7秒前
冰点完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
结实乐荷完成签到,获得积分20
11秒前
zhw297发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
14秒前
durance完成签到,获得积分10
16秒前
酷波er应助春亦晚采纳,获得10
16秒前
16秒前
17秒前
kiteWYL完成签到,获得积分10
17秒前
贪玩的小蜜蜂完成签到,获得积分10
18秒前
小蘑菇应助xixi采纳,获得10
18秒前
18秒前
Zhua子完成签到,获得积分10
18秒前
18秒前
jovrtic发布了新的文献求助10
18秒前
英姑应助聪慧仇天采纳,获得10
19秒前
19秒前
鲜艳的梦柏完成签到,获得积分10
20秒前
Adzuki0812发布了新的文献求助10
21秒前
9089090发布了新的文献求助10
21秒前
打打应助罗氏集团采纳,获得10
21秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548123
求助须知:如何正确求助?哪些是违规求助? 4633417
关于积分的说明 14631222
捐赠科研通 4575059
什么是DOI,文献DOI怎么找? 2508825
邀请新用户注册赠送积分活动 1485072
关于科研通互助平台的介绍 1456096