Application of pipeline leakage detection based on distributed optical fiber acoustic sensor system and convolutional neural network

泄漏(经济) 声学 水下 计算机科学 管道运输 电子工程 工程类 地质学 物理 环境工程 海洋学 宏观经济学 经济
作者
Yuxing Duan,Lei Liang,Xiaoling Tong,Bingshi Luo,Biqiang Cheng
出处
期刊:Journal of Physics D [IOP Publishing]
卷期号:57 (10): 105102-105102 被引量:19
标识
DOI:10.1088/1361-6463/ad1144
摘要

Abstract Underwater pipelines are exposed to harsh environments, including high salinity, multi-modal vortex corrosion, and severe wave interference. Their safety is essential for the development and transportation of marine energy. Therefore, real-time safety monitoring of long-distance energy pipelines is of great strategic importance for ensuring the safety of life and property and energy security. With the rapid development of energy development, the corrosion and leakage mechanisms of natural gas pipelines, as well as their identification and early warning, have become the focus of attention. Optical fiber sensing technology has been applied to various energy safety monitoring fields. However, the mechanism of sound source fluctuations in pipeline leakage and the mutual coupling mechanism between distributed optical fiber sensing technology and leakage sound waves are not yet clear. This paper establishes a model based on sound wave propagation and leakage noise response, derives a quadratic fitting relationship between pipeline pressure fluctuations and leakage orifices and a relationship between leakage noise source standard deviation and orifices, and proposes a complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) permutation entropy underwater natural gas pipeline leakage signal recognition method based on distributed optical fiber acoustic sensing technology. The results of theoretical analysis are verified by experiments. It shows that the signal processing method of CEEMDAN permutation entropy is superior to traditional noise reduction methods, which can better preserve the features of the original signal; the radial basis function (RBF) neural network model can accurately identify four different leakage features with an accuracy of 88.15%, and its recognition stability and generalization ability are superior to convolutional neural network, backpropagation, and random forest. Therefore, the research results of this paper provide a new method for safety monitoring in the application of energy pipeline transportation engineering, and expand the potential application scenarios of distributed acoustic sensing sensor systems and RBF neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助坚定芷卉采纳,获得10
1秒前
Dongsy完成签到,获得积分10
2秒前
2秒前
白白发布了新的文献求助10
3秒前
6666完成签到,获得积分10
3秒前
4秒前
4秒前
光亮白猫发布了新的文献求助10
5秒前
yuxia完成签到,获得积分20
5秒前
6秒前
彭于晏应助Yuanyuan采纳,获得10
6秒前
6666发布了新的文献求助10
9秒前
10秒前
Dongsy发布了新的文献求助10
10秒前
ccd发布了新的文献求助10
10秒前
陈宝关注了科研通微信公众号
11秒前
沉默的早晨完成签到,获得积分10
11秒前
轻松的千亦完成签到 ,获得积分10
12秒前
12秒前
12秒前
14秒前
15秒前
欢呼的飞荷完成签到 ,获得积分10
17秒前
嘟嘟嘟完成签到,获得积分10
18秒前
22发布了新的文献求助10
18秒前
19秒前
开心重要发布了新的文献求助10
19秒前
科目三应助bbllxyl采纳,获得10
20秒前
可爱的刚完成签到,获得积分10
20秒前
汉堡包应助白白采纳,获得10
21秒前
22秒前
22秒前
科学宝宝☜完成签到,获得积分10
23秒前
24秒前
宋宋完成签到,获得积分20
24秒前
26秒前
天天快乐应助luckydog采纳,获得10
26秒前
小马甲应助轻松的千亦采纳,获得10
27秒前
Hello应助mxy采纳,获得10
27秒前
27秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5745790
求助须知:如何正确求助?哪些是违规求助? 5428839
关于积分的说明 15354057
捐赠科研通 4885730
什么是DOI,文献DOI怎么找? 2626877
邀请新用户注册赠送积分活动 1575405
关于科研通互助平台的介绍 1532140