Meta-Scaler: A Meta-Learning Framework for the Selection of Scaling Techniques

计算机科学 人工智能 预处理器 规范化(社会学) 分类器(UML) 机器学习 数据预处理 元学习(计算机科学) 管道(软件) 选型 数据挖掘 模式识别(心理学) 任务(项目管理) 管理 社会学 人类学 程序设计语言 经济
作者
Lucas Amorim,George D. C. Cavalcanti,Rafael M. O. Cruz
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1- 被引量:2
标识
DOI:10.1109/tnnls.2024.3366615
摘要

Dataset scaling, a.k.a. normalization, is an essential preprocessing step in a machine learning (ML) pipeline. It aims to adjust the scale of attributes in a way that they all vary within the same range. This transformation is known to improve the performance of classification models. Still, there are several scaling techniques (STs) to choose from, and no ST is guaranteed to be the best for a dataset regardless of the classifier chosen. It is thus a problem-and classifier-dependent decision. Furthermore, there can be a huge difference in performance when selecting the wrong technique; hence, it should not be neglected. That said, the trial-and-error process of finding the most suitable technique for a particular dataset can be unfeasible. As an alternative, we propose the Meta-scaler, which uses meta-learning (MtL) to build meta-models to automatically select the best ST for a given dataset and classification algorithm. The meta-models learn to represent the relationship between meta-features extracted from the datasets and the performance of specific classification algorithms on these datasets when scaled with different techniques. Our experiments using 12 base classifiers, 300 datasets, and five STs demonstrate the feasibility and effectiveness of the approach. When using the ST selected by the Meta-scaler for each dataset, 10 of 12 base models tested achieved statistically significantly better classification performance than any fixed choice of a single ST. The Meta-scaler also outperforms state-of-the-art MtL approaches for ST selection. The source code, data, and results from the experiments in this article are available at a GitHub repository (http://github.com/amorimlb/meta_scaler).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助盛夏采纳,获得10
1秒前
JamesPei应助lllll77采纳,获得10
1秒前
今后应助忧郁寻冬采纳,获得10
1秒前
lcw发布了新的文献求助10
2秒前
KK发布了新的文献求助10
2秒前
2秒前
果冻发布了新的文献求助10
2秒前
蓝桥易乞发布了新的文献求助10
2秒前
科研通AI6应助可爱的山竹采纳,获得10
2秒前
BowieHuang应助坚定自信采纳,获得10
3秒前
3秒前
专注芾完成签到,获得积分10
3秒前
3秒前
nini爱科研发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
冷傲迎梦发布了新的文献求助10
6秒前
沉静的映秋完成签到,获得积分10
6秒前
6秒前
pangsummer完成签到,获得积分10
6秒前
6秒前
7秒前
领导范儿应助O椰采纳,获得10
7秒前
专注芾发布了新的文献求助10
7秒前
科研通AI2S应助MM采纳,获得10
7秒前
英姑应助赵浩杰采纳,获得10
8秒前
8秒前
小白发布了新的文献求助10
9秒前
9秒前
邵洋发布了新的文献求助10
9秒前
Ava应助cbz采纳,获得10
9秒前
9秒前
9秒前
碧蓝的念瑶完成签到,获得积分10
10秒前
111发布了新的文献求助10
10秒前
pangsummer发布了新的文献求助10
10秒前
王悠悠完成签到 ,获得积分10
11秒前
11秒前
11秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581313
求助须知:如何正确求助?哪些是违规求助? 4665766
关于积分的说明 14758178
捐赠科研通 4607617
什么是DOI,文献DOI怎么找? 2528305
邀请新用户注册赠送积分活动 1497589
关于科研通互助平台的介绍 1466474